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Chapter 1

Introduction

A uniform geometrical optics (UGO) and an extended uniform geometrical theory

of diffraction (EUTD) are developed for evaluating high frequency electromagnetic

(EM) fields within transition regions associated with smooth caustics of reflected

rays and composite shadow boundaries. Although such transition regions usually

occupy a small portion of the coordinate space surrounding an opaque scattering

object, they contain some very complicated and yet most interesting wave phenomena.

Composite shadow boundaries occur when a smooth caustic formed by an envelope of

geometrical optics (GO) [1] reflected rays is terminated due to an edge in the reflecting

boundary, or when the smooth caustic is in the immediate vicinity of the reflection

shadow boundary (RSB). Figures 1.1 and 1.2 depict radiation/scattering problems

that represent typical situations of interest for this analysis. In the concave surface

example of Figure 1.1 the composite shadow boundary is formed by the termination

of the smooth caustic occurring at T. This termination also generates a complex ray

shadow boundary (CRSB) on the dark side of the smooth caustic. In the case of

the concave-convex boundary of Figure 1.2 the smooth caustic is not terminated and

therefore a CRSB does not exist; however, a transition region is formed when the

edge at Qo is near the point of inflection, Qp, and the RSB is in close proximity of

the smooth caustic.

The UGO is a uniform version of the classic GO. It retains the simple ray optical

expressions of classic GO and employs a new set of uniform high frequency reflection

coefficients that provide for a finite reflected field near a smooth caustic on the lit
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Qe (Reflected Ray Envelope)
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Figure 1.1: Scattering and diffraction from a concave boundary containing an edge.
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Figure 1.2: Scattering and diffraction from a concave-convex boundary containing an

edge.
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side. The UGO also encompasses a uniform version of the complex GO (CGO) ray

field of Ikuno and Felsen [2, 3] that exists on the dark side of the smooth caustic. The

EUTD is meant as an extension of the classic uniform geometrical theory of diffraction

(UTD) of Kouyoumjian and Pathak [4] which is regarded as a uniform version of

Keller's geometrical theory of diffraction (GTD) [5]. The UTD provides for a finite

field associated with the diffracted rays and also compensates the discontinuities of

the classic GO fields across the optical boundaries. However, in the immediate vicinity

of caustics the incident and/or reflected fields do not exhibit the simple ray optical

behavior predicted by classic GO and therefore the UTD fails to provide the necessary

corrections near a composite shadow boundary formed by the confluence of a smooth

caustic and a ray shadow boundary. The EUTD developed in this report accounts for

the non-ray optical behavior of the UGO reflected field near caustics by using a more

sophisticated transition function in the expression for the edge diffraction coefficient.

It also uniformly recovers the classic UTD behavior of the diffracted field outside the

composite shadow boundary transition region.

The approach employed in this report to construct the UGO/EUTD solution for

the high frequency EM fields near smooth caustics and composite shadow boundaries

is based on a spatial domain radiation integral representation for the fields scattered

by a perfectly conducting smoothly indented surface containing an edge. The radi-

ation integral is then evaluated using uniform asymptotic procedures to recover the

uniform reflected, complex ray, and edge diffracted fields. The asymptotic estimate

for the surface current in the radiation integral representation is found using the phys-

ical optics (PO) [6] approximation and therefore the resulting solution only includes

first order scattering mechanisms that remain valid away from regions where grazing

fields exist. In addition, the resulting expressions for the edge diffracted field are

heuristically modified to satisfy reciprocity and the local boundary condition on the

scattering surface. Two methods are employed for the asymptotic reduction of the PO

radiation integral. The first method employs the Chester et al. expansion [7] which

results in a rigorous asymptotic reduction of the PO radiation integral. Although the

resulting solution is not in a UGO/EUTD format, that is the expression for the fields



is not in terms of the conventional ray optical GO/GTD description multiplied by an

appropriate transition function, it provides for a systematic approach for obtaining

the higher order terms in the uniform asymptotic expansion for the fields in cases

where slope scattering effects are present. The second method for the asymptotic

reduction of the PO radiation integral employs the method of steepest descent [8].

The resulting expressions in this case are indeed in a UGO/EUTD format and are in

agreement with the results of the first method to the first order term. Both solutions

reduce to the conventional GO/UTD and CGO expressions outside the transition

regions associated with the smooth caustic and composite shadow boundary.

The subject of high frequency field behavior near a terminated caustic of a com-

posite shadow boundary was investigated by Levey and Felsen [9] using a boundary

layer expansion. However, they did not provide a useful engineering solution since

they only concentrated on the mathematical aspects of the problem and specifically

on the asymptotic reduction of the relevant diffraction integral and the asymptotic

properties of the incomplete Airy functions that serve as canonical functions in the

uniform asymptotic representation for the fields. On the other hand, the subject of

evaluating fields in regions of smooth caustics but away from caustic terminations has

been investigated extensively in the past. The solution obtained by Rahnavard and

Rusch [10] is strictly valid in the caustic transition region, where Albertsen et al. [11]

heuristically modified their solution near caustics of the diffracted rays from a curved

edge to reduce to the non-uniform result on the deep lit side of the caustic. Other

solutions which use Maslov's method [12, 13] and uniformly recover the non-uniform

fields outside the caustic transition regions are not very useful for engineering pur-

poses since the relevant parameters involved in the solutions depend on the details of

the caustic geometry. A uniform asymptotic high frequency solution which remains

valid across smooth caustics of reflected rays, uniformly recovers the non-uniform ex-

pressions outside the caustic transition region, and is useful for engineering purposes

was recently developed by Pathak and Liang [14]. Their solution, however, is not

cast in a UGO format, that is the scattered field contributions do not retain the GO

ray optical expressions multiplied by an appropriate transition function, and also the



effects of the caustic termination of a composite shadow boundary are not accounted

for.

The ultimate goal of the work presented in this report is to develop a useful

and efficient engineering solution for treating high frequency radiation and scattering

problems involving higher order geometric primitives such as polynomiai or spline

defined surfaces that are commonly used in computer aided design (CAD) systems

for the modeling of complex structures such as aircraft, ships, reflectors, etc. Such

higher order surfaces often exhibit rapid curvature variation and discontinuities in sur-

face derivatives which in turn create caustics and phase catastrophes that cannot be

handled by the classic GO/UTD techniques. Numerical techniques for treating these

problems such as the method of moments (MM) or PO with numerical integration still

require vast amounts of computer resources for even intermediate size objects. Uni-

form asymptotic closed form solutions on the other hand are inherently very efficient

provided the canonical functions involved are efficiently computed. They also provide

significant physical insight into the various scattering and radiation processes, a fact

that proves useful in radar cross section (RCS) as well as antenna pattern analysis

and design.

The outline of this report is as follows: In Chapter 2, the near-zone problem for

the scattered EM fields near a two dimensional smooth caustic and composite shadow

boundary is formulated in terms of a spatial domain radiation integral which is then

reduced using two different uniform asymptotic procedures. The first method yields

a rigorous uniform asymptotic solution that provides for a systematic approach in ob-

taining the higher order terms in the uniform asymptotic expansion for the fields. The

second method yields the desired UGO/EUTD expressions for the reflected, complex

ray, and edge diffracted fields which are in agreement to the first order term with

the results of the first method. The same procedure is repeated in Chapter 3 for

the near-zone problem for the scattered EM fields near a three dimensional smooth

caustic and composite shadow boundary. In Chapter 4, the far-zone RCS problem

for the plane wave scattering from two and three dimensional polynomial defined

surfaces is formulated using the procedures developed in Chapters 2 and 3. In the

6



far-zone problem the two methods introduced in Chapters 2 and 3 produce the same

results for the reflection and zero-curvature diffraction mechanisms with the associ-

ated field expressions cast in the UGO/EUTD format. However, they result in slightly

different expressions for the EUTD edge diffraction coefficient. Although the zero-

curvature diffraction contribution in the far-zone problem is equivalent to the complex

ray mechanism in the near-zone problem, it is easier to use since it eliminates the

need for a complex extension of the scattering surface. In Chapter 5, some indicative

numerical results for the scattering from cubic and fourth order polynomial strips

are presented. The UGO/EUTD results are validated by comparison with results ob-

tained using an independent method of moments (MM) solution. The UGO/EUTD

results are also compared with classic GO/UTD results to demonstrate the need for

the new solution. Chapter 6 summarizes the accomplishments of this report, offers

some concluding remarks, and briefly discusses topics for future research. All the

new UGO/EUTD reflection and diffraction coefficients are also tabulated in Chap-

ter 6. Several appendices are also included in this report. Appendices A-E provide

important mathematical details on the asymptotic properties and efficient numeri-

cal evaluation of the canonical functions involved in the UGO/EUTD reflection and

diffraction coefficients. Appendices F and G provide some background deriwtions for

the uniform asymptotic reduction of the spatial domain PO radiation integral.

All fields are time harmonic with an assumed e j_' time dependance that is sup-

pressed throughout this report. Also the wavenumber, k, of free space is assumed to

have a small negative imaginary part to ensure that the radiation condition at infinity

is satisfied.

7



Chapter 2

Near-Zone Uniform Asymptotic

Analysis and UGO/EUTD
Formulation for the Scattered

Fields near a Two Dimensional

Smooth Caustic and Composite

Shadow Boundary

In this chapter, the behavior of near-zone high frequency scattered EM fields near a

two dimensional smooth caustic and composite shadow boundary is investigated and

a UGO/EUTD solution is developed for the description of the scattering mechanisms.

A composite shadow boundary occurs when a smooth caustic formed by an envelope of

GO reflected rays is terminated due to an edge in the reflecting boundary, or when the

smooth caustic is in the immediate vicinity of the RSB as shown in Figures 1.1 and 1.2.

The caustic termination also generates a complex ray shadow boundary (CRSB) on

the dark side of the smooth caustic. When the RSB is not in the immediate vicinity of

the smooth caustic, the conventional UTD edge diffraction solution [4] which involves

the Fresnel integral as a canonical function can be used effectively together with the

solution in [14] to describe the fields away from the composite shadow boundary.

However, near the composite shadow boundary where a confluence of both reflected

and caustic type shadowing occurs, the Fresnel integral is not adequate to describe



the diffracted field behavior and it must be appropriately replaced by the incomplete

Airy functions [9] via a uniform asymptotic procedure.

The present analysis is based on a spatial domain radiation integral representa-

tion for the fields scattered by an analyticalJy described smoothly indented perfectly

conducting boundary containing an edge. The asymptotic estimate for the surface

current induced by the incident field from a source whose vector pattern function

can also be described analytically is found using the PO approximation. The PO

radiation integral is subsequently reduced using two uniform asymptotic methods to

recover the uniform expressions for the scattering mechanisms. The first method em-

ploys the Chester et al. expansion [7] and results in a rigorous uniform asymptotic

reduction of the PO radiation integral. Although the resulting solution is not in the

desired UGO/EUTD format, that is the expression for the fields is not in terms of the

conventional ray optical GO/GTD description multiplied by an appropriate transition

function, it provides for a systematic approach for obtaining the higher order terms

in the uniform asymptotic expansion for the fields in cases where slope scattering

effects are present. The second method for the uniform asymptotic reduction of the

PO radiation integral employs the method of steepest descent [8] and the resulting

expressions in this case are indeed in a UGO/EUTD format.

The PO integral for finite concave or concave-convex shaped boundaries is char-

acterized by two stationary phase points that are arbitrarily close to one another or

to the integration endpoint associated with the edge. The stationary points are real

and correspond to the two points of reflection when the observation point is on the

lit side of the caustic. For observation points near the smooth caustic itself, the two

stationary points coalesce to form a second order stationary point that moves near the

integration endpoint for observation points near the caustic termination or composite

shadow boundary. For observation points on the dark side of the smooth caustic, the

two stationary points become a pair of complex conjugate stationary phase points

with only one of them satisfying the radiation condition and eventually contributing

to the fields on the dark side. Away from the caustic transition region the contri-

bution from the complex stationary point was interpreted by Ikuno and Felsen [2, 3]

9



as a complex GO ray field reflected from the complex extension of the boundary.

This complex GO ray field obeys a generalized form of Fermat's principle with all

the parameters involved computed in complex space through analytic continuation

and in precisely the same manner as for real GO rays as shown in [14]. In the case

of a caustic termination as in Figure 1.1, the complex ray field only exists in the

illuminated side of the CRSB, and therefore the edge diffracted field has to provide

continuity in the total field across this boundary as well as the optical boundaries

associated with the real GO rays on the lit side of the caustic.

Although higher order mechanisms such as edge excited creeping waves and whis-

pering gallery modes may also exist and contribute significantly to the scattered field

from the geometries considered, they will not be addressed in the analysis that follows.

The problem formulation and the derivation of a uniform asymptotic solution using

the Chester expansion for the asymptotic reduction of the PO radiation integral are

presented in Section 2.1. In Section 2.2 the method of steepest descent is employed for

the asymptotic reduction of the PO radiation integral and the UGO/EUTD expres-

sions for the reflection, complex ray, and edge diffraction mechanisms are formulated.

2.1 Derivation of a uniform asymptotic solution

using the Chester expansion

In this section, the spatial domain PO radiation integral is formulated and then

asymptotically evaluated using a rigorous uniform asymptotic procedure that employs

the Chester expansion. The canonical geometry for the analysis that follows is a semi-

infinite two dimensional concave or concave-convex boundary as shown in Figures 2.1a

and 2.1b, respectively. The scattered dectric fidd at any point P exterior to the

surface boundary C can be expressed in terms of the usual radiation integral over the

electric current f induced on C by the source at P' as follows:

g°(p) kZo

where

,R = Q'P, R = IRI, R =

10
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Figure 2.1: Canonical geometries for the uniform asymptotic analysis:

infinite concave boundary, and (b) semi-infinite concave-convex boundary.

(a)semi-

11



Y(Q')

Zo

k

dl'

= value of f at any point Q' on the surface,

= cylindrical Hankel function of the second kind of order zero,

-- impedance of free space,

= wavenumber of free space, and

= line integration dement.

Also, the observation point P cannot be too close to the scattering boundary for

Equation (2.1) to be valid. When the scattering boundary is electrically large and

well illuminated, one can use the PO approximation to (2.1) in which the induced

current is assumed to be given by GO as follows:

' x/7_(Q'), on the lit portion of the boundary
Y(Q')-- (2.2)

0, on the shadowed portion of the boundary

in which _' is the outward unit normal to the surface at Q', and/_i(Q,) is the direct

incident magnetic field from the source whose phase center is at P' and may expressed

ray optically as follows:

#'(Q') e-_"' _' _ O, (2.3)~ Zo'(_'×X) V_; " =
--lAi= Zo• × g'(Q'), (2.4)

= ._(Q,)_-_"
V_ ' (2.s)

where A is the vector source pattern, _" = P'Q', s' = I_'l, and i' -- _"/8'. Using the

assumed current in (2.2) and the large argument form of Hankel function given by

H_)(kR)~ 21-/_ _-_'", forkR >>1, (2.6)

]_'(P) is given by the following stationary phase integral:

g'CP)_ f_(e)_-_'_")._' (2._)
la

where

f(t,) = ,PfJ-_'_(t')× _(t,)× [_(t,)× _,(t,)× X(t,)]
VV_ _/.,(t,)R(t,)

,/,(e) = ,,'g') + R(e).

, and (2.8)

(2.9)
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The phase function contains two real or complex stationary phase points 1_.2 satisfying

the condition ¢(l_.2) -- 0, and are arbitrarily close to one another or to the integration

endpoint la. Before proceeding with the asymptotic reduction of the integral in (2.7),

we choose the reference point on the scattering surface to be Q0, which is a first order

stationary point of the derivative of the phase function, that is ¢(10) = 0 and must

necessarily lie between the two stationary phase points on the concave part of C. For

the moment, we assume that this point is real without losing the generality of the

analysis. Then, the quantities R(l') and s'(l') are given by

R(l') -- I/_ - _l')l , and (2.10)

s'(l') = I_ + _l') , (2.11)

where _ = QoP, _'o = P'Qo, and _(l') = QoQ' is the natural representation of the

scattering boundary.

The first step in the asymptotic reduction of the stationary phase integral in

Equation (2.7) is to expand the phase function in a Taylor series around 10, that is

_(_')_~_(_0)+ (r- to)_(_0)+ (_'J°)2_(_0). + (t'-3_t°)3_ fro). (2.12)

The derivatives of the phase function can be expressed in terms of the geometric

parameters of the surface and using (f.9), (f.14), and (F.19) they are given by

¢(10) : (_'o- ho)./'0, (2.13)

• so)a_(Qo) + + -0 (2.14)
So Ro '

¢(to) = _o.(R_o-F_)a',(Qo)+_o.(_-g_)a:(Qo)

+ [..(Oo) J

[+ 3(_%._o)(_._'o1,_,(Oo)+ ° =_(Oo), (2.15)
Ro

where t'0 and n0 are the unit tangent and normal vectors to C at Qo, respectively,

and _;g(Qo) = 1/pe(Qo)is the normal surface curvature at Q0. From Equation (2.14)

one can observe that the point l0 is real for a concave or concave-convex boundary,

with _;g(Q0) < 0. On the other hand, for a strictly convex boundary, the point 10,

13



if it exists, must be complex. In the special case of plane wave incidence with the

iobserver in the Fraiinhofer region of the boundary, that is ao, Ro _ c¢, the point Q0

is a zero-curvature (inflection) point that satisfies s_(Q0) = 0. For this case, l0 may

be real for strictly convex boundaries as well.

Next, we make the following linear transformation:

• =(e-lo) , (2.16)

where m(Qo) is given in (2.15), and Equation (2.9) becomes

¢(e') = ,-(,) = _ +/3, + _V3, (2.17)

where

1

a = _b(10) = _ [¢(£1) + ¢(12)], or (2.18)

: ¢(e,.2)+ _(_/3),,2, or (2.19)

= ¢(eo)-/3,° - ,:/3, (2.20)

= , or (2.21)

= - [¢(e,)-¢(z,)] ,or (2.22)

7:{_ [,('o)¢(t,.,)]}'"= - , and (2.23)

,o = (lo- lo) , or (2.24/

= ±[_(lo)-_(to/]" ...,._o,_ . ; (2.25)
- if Qo E (7.

The proper branches for/3 and ,_ depend on the sign of m(Qo). Thus, using (2.17)

Equation (2.7) transforms to the following expression:

where

d(,) = ._(e)a,_8 ' (2.27)
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ds - , and (2.28)

The proper branch for at' also depends on the sign of re(Q0).

Next we employ the Chester et al. expansion [7] for the amplitude function in

Equation (2.26), that is

6(s)
rn_O

= _0+ 86°+ (8' + _)_(8), (2.30)

where

ds ,l

and thus Equation (2.26) becomes

1 [G(sl) + G(s_)] , (2.31)_o =

60 - 281_[d(_,)- _(8_)], (2.32)

_(s) _ _ [_..(s=+ fl)m-_+ _._s(s=+ _),.-,], (2.33)
rn=l

81,2 .._. _J[._ (___)1 ]2 ; 7J(81,2) = 0, (2.34)

d'/ds',1 2
G(s,,2)-- .i_(£_,_) , (2.35)

= (__).4| +2 (2.36)
_;(11,_)'

[ /.... /*E'(P) _ e-_h" g.o e -j*(_'+''m da + be se -jh(_'+''/_)ds

+ f (8' + _)_(8)e-_.c_.+s.)d8 .
11a

(2.37)

The third integral on the right hand side of Equation (2.37) is regular over the entire

path of integration, thus employing integration by parts for this integral we get

} ,oiF-,'(P) _- e -jk° e -j*(_°+°-'/_) ds + se -_h(B.+°'/')ds

8a °a

(2.3s)
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Now, from Equation (2.30) we have that

e. +f_
(2.39)

and omitting the O(k -_) terms, Equation (2.38) becomes

] j ]e -jh° e -jh(_°+°a/s) da -J- 8 e -jh(°°+°3/s) ds

OG I_

L_k,,(,°)jk(_+,:)j•
(2.40)

Next, we let s = k-'/3t, _ = k-2/_7, and aa = k-_/_(_o in (2.40), thus

'[ .... ; ]"_ _ _o f e -j_'+e/-') dt + bo t e -j('_t+ts/s) dt
Ca Ca

+ Lj_<,.)+_(_¥_j •
(2.41)

Finally, depending on the sign of re(Q0) the scattered electric field E°(P) is given by

_'(P)

+
jk_b(t.) + v_(? + ¢_) , if m(Qo) > 0

e-Jk_.____a

+ e -jk¢(l°)
_(lo) j(g0+¢ob0) , ifm(Qo)<O,

v_ ('r + C)

(2.42)

(2.43)

where (.) denotes the complex conjugate operator, 7 = k_/_, (_o = kl/'s., and a, g0,

and b0 are given by the following expressions:

{

= ¢,(t°)- _-' (-_¢°+ C/3),

= ¢(t,,_)+ _k-' _(--r) ',_,

: sgn[mCQo)],

_o} (--y)*',' [f(ll)_ 2

16
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The function Ai(7 ,_) is the incompleteAiry integral defined by

_(_, ¢) _ f¢(_'÷'_/_)d_. (2.48)
¢

The second term in both Equations (2.42) and (2.43) is an edge diffraction con-

tribution where the first term in (2.42) and (2.43) appears to be a contribution from

the two real or complex stationary points. If left in this form, the solution would

clearly be in a UAT format [15], since the necessary corrections to the fields near

the optical boundaries are performed on the reflected field as opposed to the edge

diffracted field in a UTD type solution [4]. In fact, the first term in Equations (2.42)

and (2.43) besides containing reflection and complex ray mechanisms, it also contains

edge diffraction contributions implicitly embedded in the incomplete Airy integral.

Therefore, in order to obtain a UTD type solution it is necessary to separate the edge

diffraction contributions in (2.42) and (2.43) by using the properties and complex

plane topology of the incomplete Airy integral found in Appendix C. In this form,

the solution would be applicable to more general problems and also provide important

physical insight into the individual scattering processes.

2.1.1 Scattered field solution on the lit side of the caustic

On the lit side of the caustic, the two stationary phase points l_,_ are real and cor-

respond to real reflection points Q,._ on C. Therefore, the parameter 7 in Equa-

tions (2.42) and (2.43) must be negative. Using (C.9)-(C.11), the scattered field

solution on the lit side of the smooth caustic is given by

1. m(Qo) > 0 :

_.(p_) ~

+

+

if

g.(v_) ~

{ )

j_ ¢c,,°+e.,.) g;(%¢°)+ ¢___=__-7 + ¢._ '

¢o< -(-_)-,,_,

(2.49)
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_'(P_) ~

2. m(Qo)< o:

_'(P_) ~

liar(l°) + _ -r+ ¢---_

+ J_ e_C"_°+d/_)_Tg;(3"(") + "r_ '

if -(-7) '/_ < _. < (-7)-_/2,

+ J_ _'"+e'"'Ng,('r,¢°)+ _ '

if 5 > (-7) -_/_.

-_v_,-''o{[_oW_C_)-j_oW:C_)]-[_oW_C_)-_ow;c_)]/

(9..50)

(2.51)

+ __,,_,°,{P(to)jk_.__.)+ _'_°[_-_(''°+e'%dr' ¢o) _ _J]¢:

. _o [ _;_.,o+,:,,,o _ ,_ _o }-r+¢._ '

if 5 < -(-7) -'/_

- 3_ e-J("¢°+d/s) 0 _ t_ 7

if -(-7) '/_ < _,, < (-7) -'/_

ff"(PL)"_e-_*'*('°){ ff(l*)jk--_) +_a° [e-'i('¢'÷ d's)g_ (7' ¢°) 7_¢_J ]

"g° [e-J¢"¢'+_/')Og 7, ¢* }:_ o-r '(¢°) + "r+¢_

if ¢° > (-7) -'z_ ,

(2.52)

(2.53)

(2.54)

where W1,:(7) are the Fock-type Airy functions [16], and g,(7,¢_), i = 1,2,3 are

the incomplete Airy functions [9]. From (2.8), (2.9), (F.9), and (F.28) we have the
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following relations on the lit side of the caustic:

_(11.2) (2.55)
= V_ _ '81,2

, - (2.56)_(l,,_) = _,,,+_,,_,

,_('1,2) = c°s20:'2(_,2 +sl,)'and2 (2.57)

d(10) = (_- _).70 = -(cos¢o +cos_0), (2.58)

where 01,= is the usual angle of incidence at QI,_, _'0, _o are defined in Figure 2.1,

and P[,2 is the radius of curvature of the reflected wavefront from QI,_ given in (F.29).

Also, the vector expression in the numerator of (2.55) may be written as follows:

_[,_× _[,. × [_,,_× .,.. × _(Q,.,)] = cosOl.,A(Q,,,)._ (Q,,,), (2.59)

where 1_ (Q1,2) is the dyadic GO reflection coemcient and is given by

= n,,_n_,_- _= R,_._. + Rhe,(Q,,_)e,(Q,._), (2.60)

= T1 ; for a perfectly conducting boundary, (2.61)

is the unit dyad, and the vectors _± and ell are defined in Figure F.2. Thus,

using (2.21)-(2.23), (2.45), (2.47), and (2.55)-(2.59), the parameters a, % fro, and bo

for the lit side of the caustic are given by

Ot

-y

-.o

bo

, , + 6k-,_(_./)_/_

= -k _l'lcos_o'+cos_ol _ , or
mt l4o)

= - k t(_ + _;)- (_:+ _7)1 , or

(,,o (, ,)]'= - k +Ro)- s,,,+s_,, ,

A(Q2)" R (Q,) _ p; ]+ _ p; + s;

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)
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Figure 2.2: Scattered field regions associated with a concave boundary containing an
edge.

Before proceeding with the scattered field solution on the dark side of the caustic,

a few observations on Equations (2.49)-(2.54) are in order. First, Equations (2.49)

and (2.52) apply on the illuminated side of the reflection shadow boundary (RSB)

designated as region I in Figures 2.2 and 2.3, where two reflected ray contributions

exist and are represented by the first term in (2.49) and (2.52) involving the Fock-type

Airy functions and their derivatives. The second term in (2.49) and (2.52) represents

the diffracted field contribution from the edge. Equations (2.50) and (2.53) apply

on the shadow side of the RSB designated as region II in Figures 2.2 and 2.3, where

only a single reflected ray contribution exists and is represented by the first term

in (2.50) and (2.53). The second term in (2.50) and (2.53) represents the diffracted

field contribution from the edge. Equations (2.51) and (2.54) apply in regions III and

VI in Figures 2.2 and 2.3 where only edge diffracted rays exist.
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Figure 2.3: Scattered field regions associated with a concave-convex boundary con-

raining an edge.
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2.1.2 Scattered field solution on the dark side of the caustic

On the dark side of the caustic, the two stationary phase points tl,2 are complex

and correspond to complex reflection points Qc which are interpreted to lie on the
1,2

complex extension of C. Therefore, the parameter _/in Equations (2.42) and (2.43)

must be positive. Using (C.12) and (C.13), the scattered field solution on the dark

side of the smooth caustic is given by

1. _(Qo) > o:

+

if

2. m(Qo)< o :

2¢e-"° [_oAi(_)-AAi'(-y)]_,.(p_) ~

if

_.(p_) ~

+ e__,,<,o),j'f!to) _0 [e-'<"°++')s,(%_'o)/ sk¢(t.) +

" _° [e-_<'<°++'_O - " 'o1}7

G<0,

e-J'*(t,,)_f!t°) '° [e-_'(,,.+_/a)g, (%(¢k¢(t.) + _ ¢°)

- J_kk[e-'<"<,,+dls)_-_g,(7,,.)+_]},

if _>0,

J

J

(_.67)

(2.6s)

(2.69)

(2.T0)
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whereAi(7) is the ordinary or Miller-type Airy function [17]. In the dark side of the

caustic we have the following relations:

ff(ll,2) = _Jv_-_ cos 01_(Q_,2)"_ si_/_e(Q_'_) , (2.71)

'o "° and (2.72)¢(t_,_) = s,._+s,,_,

(1+__1) , (2.73)_;(l,,,) = coee5 p ,;;

where/_e(Q:,2) is the dyadic complex GO reflection coefficient and is given by

--e eh (Q,:)

R;,h

= n_,_nl, 2 _I R:$_e_+R_eI.(Q_.2)elI(Q,.2), (2.74)

= =F1 ; for a perfectly conducting boundary. (2.75)

Notice that all the quantities in (2.71)-(2.75) with the superscript c are associated

with the complex reflection points Q_._ and are analytic continuations along the com-

plex extension of C [2] of the quantities associated with the real reflection points Q,,_

in the lit side of the caustic. They are evaluated in precisely the same fashion as the

quantities associated with the real reflection points. Thus, using (2.21)-(2.23), (2.45),

(2.47), and (2.71)-(2.73), the parameters a, 7, if0, and go for the dark side of the caus-

tic are given by

Ot

7

ao

_o

,e jgk_ _2 3/_= _,,,+_;,_T _'Y ,

2 t= k_/"I¢os_"o+ cos_ol

= [_k 1(_,_°+,7)-(,y+,;e)l]',

(.,o ( )]'ic rc

= k + Ro) - s,._ + s,.,

+

, or

or

(2.76)

(2.77)

(2.7s)

(2.79)

(2.80)
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- "4(Q:)" R_(Q_) Cv'_P_ p_+s: ° I (2.81)

A few observations on the nature of the scattered field solution on the dark side of

the caustic axe as follows: First, Equations (2.67) and (2.69) apply on the illuminated

side of the CRSB designated as region IV of the dark side in Figures 2.2 and 2.3,

where both complex ray and edge diffraction contributions exist. The complex ray

contribution is represented by the first term in Equations (2.67) and (2.69) involving

the ordinary Airy function and its derivative. Although the values associated with

both complex stationary points are present in the expression for the complex ray

contribution, as will be shown later in this section, in its asymptotic limit it contains

only the reflected field from one of the complex stationary points. The second term

in (2.67) and (2.69) involving the incomplete Airy function and its derivative repre-

sents the edge diffraction contribution in region IV. Equations (2.68) and (2.70) apply

in shadow side of the CRSB designated as region V of the dark side in Figure 2.2,

where only edge diffracted field contribution exists.

2.1.3 The reflected field and its limiting forms on the lit
side of the caustic

From Equations (2.49)-(2.54) and using the fact that W1(7) = W;(7) the reflected

field on the lit side of the caustic may be written as follows:

e-'/_ • [,A, ,._1,4 Wl(_,_,) jB._ ,_e;l/4 Wtl(__/z)]~ 2

- (2.82)
if m(Qo) > O,

e -_ _t _/_

-- _[_2 e-jh''s IX' _1]'1W;(--_') "_" j/_._"_;1/4 W;*(--'_¢,)] } (2.83)

if re(Q0) < 0,

u,,2 = u (-_,, -4-7't/') , (2.84)
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where u(z)is the Heaviside unit step function and from (2.62), (2.64), and (2.66) the

parameters 7t, 51,'+' X_, and J_t are given by

7, = [_kl(s:+s;)-(s:+s_)l] ']_

+ , + 6k-'_7_/'+0tl,2 = St,,+ "4- 31, 2

v_ p;-+ s;- + A(Q')" J_ (Q+) I_--- p;p; + s;

(2.85)

(2.86)

, (2.8?)

with g given in (2.46). The first term in (2.82) and (2.83) is non-zero in regions I and

II of Figures 2.2 and 2.3 and represents the uniform reflected field contribution from

Q,. The second term in (2.82) and (2.83) is non-zero only in region I of Figures 2.2

and 2.3 and represents the uniform reflected field contribution from Q'+. Both terms

in (2.82) and (2.83) are zero in the remaining regions of Figures 2.2 and 2.3 where

only edge diffracted and/or complex ray fields exist. Also, it should be noted from

Equations (2.82) and (2.83) that the uniform contributions from each reflection point

are not completely independent of each other since the values from both reflection

points are explicitly contained in the parameters At, and J_t.

Next, let us investigate the behavior of the reflected field by examining two limiting

cases.

Limiting case 1 : Observation point on the deep lit side of the caustic.

In this case, the parameter 7_ >> 1, and using the large negative argument forms

of the Fock-type Airy functions and their derivatives given in (A.21)-(A.24) Equa-

tions (2.82) and (2.83) become

I __+(._+.3)(_+_,+(p+)...,

+ ._,__.+,.(.++.+)(_,+

E'C+P+)- _e-'"+'++'_'(X,2

+ 1_+_.;+.++(¢+,2 e

From (2.5) and (2.87), we have that

+ ,,) +,+(-co+7,]+)

- E) ,+C-Co-7+]2);

+_,) -C-C,+-),+"+)

- J_,)-(-¢o - 7+':');

if re(Q0 ) > 0, (2.88)

if mCQo) < O. (2.89)

= ¢'(Q,,_)._ (Q_,_)_ P;'+
p_.'++ s"1,2

, (2.90)
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and the reflected field on the deep lit side of the smooth caustic is given by the

following expression:

+

with the understanding that

p; e-_.;"2g'(Q2)" R (Q2) P; + 8; (2.91)

pl <>0for
p;" + 8;

P; Xo for
p; + 8;

_[p P" =r .._ 3,"

m(Qo)<>o,

m(Qo) <>0, and

if_
J p'+8"

r

<0.
p'+8"

Equation (2.91) shows that the reflected field solution on the deep lit side of the

smooth caustic reduces to the classic GO expression as expected.

Limiting case 2 : Observation point lies on the smooth caustic of reflected rays.

In this case, % ---, 0 in (2.82) and (2.83), where the spread factors in (2.87)

become singular for observation points at the caustic, that is P_a --* -s_a" From (2.28)

and (2.36) the reflected ray spread factor near the caustic assumes the following form:

V/ p; cose_(k/2),/o_7_/, (2.92)
p; + 8; v_l_(Qo)l" '

and thus using (2.87) and (2.92) we have

_,. _, = 2cos0_(k/2),_.[_(Qo).fi (Qo)
v/_[_(Q°)ll/" L _ , and (2.93)

7['/',/3t _ 0. (2.94)

Also, the Fock-type Airy functions, Wla, assume the following small argument form:

W, 2(0) - 3-_/' 1'(1/3)' 2v_ (3','±j,5), (2.95)

and thus the uniform asymptotic expression for the reflected field close to the smooth

caustic is as follows:

(2.96)
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2.1.4 The complex ray field and its limiting form on the

dark side of the caustic

From Equations (2.67)-(2.70)the complex ray fieldon the dark sideof the causticis

given by the followingexpression:

.E°(Ps) '_ jv"-_e-i*_'2[,4,7_/*Ai(7,)q:]_,7;_/'Ai'(%)] u(-(°), (2.97)

for ._(Q0)X0,

where from (2.76), (2.78), (2.80), and (2.81) the parameters %, a_.2, A0, and ]_, are

given by

% : [_kl(s_°+s;c)-(si_+s:°)l] 2/3, (2.98)

c __ ic Pca_,_ 8_.2+ 8,,_ T Jbk -_2 ,._5-r., (2.99)

A(Q,)._ (Oil / P;2
: _ Vp:c+8;°

-* c / rc

-4- A(Q_). R (Q;) V P' (2.100)v_ p;o+ 8;° '

The uniform complex ray field solution in (2.97) is non-zero only in region IV of

Figures 2.2 and 2.3. Although the values associated with both complex reflection

points are present in the expression for the complex ray field through the parameters

A,, and ]_, on the deep dark side of the caustic only the contribution from one of

the complex reflection points should be present in the solution since the contribution

from its complex conjugate counterpart violates the radiation condition and produces

an unbounded result. On the deep dark side of the caustic the parameter % >> 1,

and using the large argument form of the ordinary Airy function and its derivative

given in (A.10) and (A.11) the complex ray field in the deep dark side of the smooth

caustic is given by the following expression:

_°(v_) ,,(-_°) ', _ _-, ,,,.,_ E(Q,,,)._tno _ /. PZ' "h.'+'=
,._,.,,Vp,i_ + + a';_., ; m(qo)<O, (2.1Ol)

with the understanding that p;._,/(p;?_ + s:_,) < 0 on the dark side of the caustic.

Equation (2.101) indeed shows that the complex ray field solution in the deep dark

27



side of the smooth caustic reduces to the non-uniform complex GO expression of

Ikuno and Felsen [2, 3] obtained independently via the complex stationary phase

method [181 .

2.1.5 The edge diffracted field and its limiting forms

The edge diffracted field may be written as follows:

_d(p) --,= E,,,,(P)+F_,/(P) (2.102)

where g_(P) and _(P) are the non-uniform and curvature correction terms, respec-

tively. From Equations (2.49)-(2.54) and (2.67)-(2.70) they are given by the following

expressions:

where %, (o, Aa, and B,,

Tll

UO

are given by

= ,0_*I(co.,'0+¢o_,0)-(oo.,:+oo.,.)l'"I_

+1 ifQo _ C-1 if Qo E C,

(2.106)

, (2.107)

(2.108)
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= 2v/-_ , if 7a< 0 (2.109)

-7_/'{J_" }'if%>0'2v/_B, (2.110)

where .z_, /_ and A., /_0 are given in (2.87) and (2.100), respectively. The non-

uniform term in the diffracted field expression of Equation (2.103) can be recognized

as the non-uniform PO solution for the edge diffracted field from a half-plane. The

curvature correction term given by Equations (2.104)-(2.105) cancels the singular

non-uniform term near the real ray optical boundaries, namely the RSB and ISB.

It also compensates the discontinuities of the incident, reflected, and complex ray

field components at the ISB, RSB, and CRSB, respectively, thus ensuring continu-

ity in the total field. As will be shown in more detail later in this subsection, the

curvature correction term reduces to zero away from all optical boundaries. Before

proceeding with a more detailed examination of the two terms comprising the edge

diffracted field, some disadvantages of the formulation in Equation (2.102) should be

mentioned. First, the singularity near the real ray optical boundaries is subtracted

by the curvature correction term. For practical implementations this could result in

numerical instabilities due to the subtraction of two large numbers that tend to in-

finity at the aforementioned boundaries, and therefore it might be necessary to take

special limiting procedures near these boundaries. Second, the expression for the

curvature correction term involves information about the reflection points explicitly

contained in the vector quantities Ad and /_d, and at least from a philosophical point

of view, the locality ansatz of GTD/UTD postulating that the edge diffracted field

only depends on the geometrical properties of the surface near the edge is clearly

violated. Nevertheless, this non-local nature of the diffracted field is a direct result

of the rigorous Chester et al. expansion [7] employed at the outset of the asymptotic

analysis which provides for a systematic method for obtaining the higher order terms

in the asymptotic expansion for the fields in the vicinity of the smooth caustic.
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Next, let us proceed with a more in depth examination of the two terms com-

prising the edge diffracted field. The non-uniform term will be examined first. From

Equations (2.8) and (F.9) we have

f(l.) (2.111)Vf-
 (lo)= -cos - cos (2.112)

where the vector quantity in the numerator of (2.111) can be written as follows:

^,_ ,, [fi,, _, ,_(Q )] _(Q [ ^,^,,] (2.113)s, x _. x x . x . = - .). sin _0'a eie± - sin _0aell e II '

with _' and _o. being the angles of incidence and observation, respectively, measured

from the edge-fixed coordinate system, and @., _il'd are the unit vectors fixed in the

incident and diffracted rays as shown in Figure 2.4. Thus, using (2.111)-(2.113) the

non-uniform term of the diffracted field is given by

e-ih,_

g_.,,(P) .._ E'(Q,,). D.,, (Q,,) _ , (2.114)

where E'(Qo) is the incident electric field at the edge and /_.. is the non-uniform

dyadic PO diffraction coefficient given by

/_.. (Q.) = D.(_:,_oo)_± + Dh(_o:,_o.)_ '^d (2.115)IIe II,

e-J _ sin _oo

D.,h(_'.,cp.) = -4-_ (cos_' + cos_,)" (2.116)

It is well known that the PO diffraction coefficient does not satisfy reciprocity nor

does it satisfy the local boundary condition on the surface for the soft acoustic or TM

polarization case. These shortcomings are expected to produce erroneous results for

observation points away from the optical boundaries where the total diffracted field

would equal the non-uniform PO part. A rigorous method of providing the necessary

correctionsto the PO approximation isto employ the PTD technique/19] at the out-

set of the analysis.PTD introduces a non-uniform induced current near the edge in

addition to the GO current.However, thisaddition most often makes the asymptotic
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reduction of the resulting radiation integral quite difficult if not impossible, thus ne-

cessitating the use of time consuming numerical integrations. A rather heuristic but

indeed simpler approach for correcting the edge diffracted field contribution is to im-

prove the PO diffraction coefficient by introducing a pair of multiplicative correction

terms (one for each polarization) derived by James [20], that is

= sin( o/2)sec( o'/2), and (2.117)

= cos(¢/2) (2.1iS)

which enforce reciprocity and the local boundary condition for the soft acoustic or

TM polarization case so that the PO diffraction coefficient yields the exact diffrac-

tion coefficient outside the optical boundaries. A plot of the PO correction factors

appears in Figure 2.5. The correction factors are approximately unity near the real

ray optical boundaries (_ = lr + _o'), and therefore they do not affect the cancellation

of singularities or the compensation of discontinuities in the incident, reflected, and

complex ray field components provided by the curvature correction term in the edge

diffracted field.

Next, we will investigate the behavior of the curvature correction term of the

edge diffracted field by examining certain limiting cases. The curvature correction

term is expected to cancel the singular non-uniform term and enforce total field

continuity near the optical and composite shadow boundaries, while reducing to zero

for observation points far removed from such regions.

Limiting case la : Observation point on the deep lit side of the smooth caustic of

reflected rays.

In this case 7o << -1 in Equations (2.104) and (2.105), and using the asymptotic

formulas for the incomplete Airy functions and their derivatives in Appendix B, the

curvature correction term assumes the following form:

"_d ' ° F(¢): ]
2j_/(_%),/,/ ; if m(Qo) > O,

1- F'(T/2)] if m(Oo) < O,

(2.119)

(2.120)

(2.121)
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where

[ : ],7= + _°_o+ _:/3 + (-_°)'_' ; _°_ (-_°V' sgn(_o), (2.122)

and F(z) is the UTD transition function [4]. Note that when the observation point is

fax removed from the optical boundaries, that is ]_7[>> 1, F(_f) ---, 1 and the curvature

correction term reduces to zero as expected.

Limiting case lb : Observation point on the deep lit side of the smooth caustic of

reflected rays and close to the RSB.

In this case, (o _ _(_%)1/2 with % << -1 in Equations (2.104) and (2.105) or 7/_ 0

in (2.119) and (2.120). Again using the asymptotic formulas for the incomplete Airy

functions and their derivatives in Appendix B, the curvature correction term assumes

the following form:

_(P_) ~

if

7° 2(-7°)'" '
_(Qo) > 0,

/_'dCeL) ~ e--#J'(°_+'d) [Ad-- (--%)1'2 /'_"] {7- -j7 _ + 2(v/_e-#'}--7.)'/' ' (2.124)

if m(Qo) < O.

(2.123)

Now, from Equations (2.28), (2.36), (2.87), (2.106)-(2.109), (2.115), and (2.116) we

have that

7o+_: = -6'5(-%)'/' (c°s¢'+c°s_°)li2-_'s_n"_'o .p:+_:-", (2.126)

e-J_ sin_:/_ (Q.) (2.127)
D°" (Q°)_ = -_(cosv.' + cos_o)'

and using the fact that s: = s d at the RSB, the curvature correction term is given by

e-Jl"d _ . i P: e-j,._f_y(p_) ~ -_,(Qo). _.. (Qo)_ + _'(Q°). _ (Q)

= __£(p_) + _-_(P_), (2.12s)

with the + sign for the shadowed and illuminated sides of the RSB, respectively.

Therefore, the singular non-uniform term is cancelled, and the discontinuity in the

reflected field is appropriately compensated to provide continuity in the total field.
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Limiting case lc : Observation point is close to the ISB.

In this case, _o _ (-7°) 1/2 with 7. << -1 in (2.104) and (2.105) or 7/_ 0 in (2.119)

and (2.120). Again using the asymptotic formulas for the incomplete Airy functions

and their derivatives in Appendix B, the curvature correction term assumes the fol-

lowing form:

g:cP,) ]{ % +JC----_± 2(-%),,,v%-_}

if m(Qo) > 0,

~ e-_'_"_+'_'[X_+ (-_°)'_ B_]{ %-J¥C:± 2(--_o)"v_e_}

if rn(Qo) < O.

, (2.129)

, (2.130)

Now, from (2.87), (2.109), (2.111), (2.115), and (2.116) we have that

eJ_ (--"_a) 1/4

sm _ Vsa + so

D,u (Qa),sB e-i_ sin(p' _ (2.133): v/_(cos V,'o+ cos_a)'

: ^ ^ ^,^d (2.134)exe± -t- e iie II '

; and A(Q.) = A(PL) at the ISB, theand using the fact that s',. + s d,,= [P'PL] = sp

curvature correction term is given by

"' (2.135)

= -E_".(P_) + _-E'(PL), (2.136)

with the + sign for the shadowed and illuminated sides of the ISB, respectively.

Therefore, the singular non-uniform term is cancelled, and the discontinuity in the

incident field is appropriately compensated to produce a continuous total field.

Limiting ease 2a : Observation point lies on the smooth caustic of reflected rays.

In this case Q,,_ --, Q0 thus, 7o = 0 with _o < 0. Also, /_d _ 0 and using the

small argument form of the incomplete Airy functions in Appendix B, the curvature
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correction term is given by

g:(P) ~

if m(Qo) > O,

if ,n(Qo) < 0,

-e;_/'_'_3-:/' r (1/3,iC/3)+ _],

,]_e-,_/,e-,_3-_/,1"(1/3, _jC/3)_

(2.137)

(2.138)

where r(z,y) is the incomplete Gamma function [21]. When _. << -1 or the obser-

vation point is far removed from the RSB, the incomplete Gamma function assumes

the following large argument form:

r(_,v)~(-v):-'e -_, (2.139)

and letting z = 1/3 and y = jCI3 one can show that E_(P) _ 0.

Limiting ease 2b : Observation point coincides with the caustic termination point

T.

In this case Q,,2 = Q0 --* Qo, thus 7o = 0, (_ = 0 _, and (2.137), (2.138) become

E,_(T-) ,-...,4de -j'('i+'_) -e'_3-'/'r(1/3)+_/ , (2.140)

~ i_e -;*(':+'-_)e-'t3-i/'r(1/3)+_i . (2.141)g:(T+)

Now, from (2.92), (2.93), and (2.107)-(2.109) we have

.4d = ej_ (k/2)_/° c°s0° A(Qo)_-R__-_(Qo)[ (2.142)

.W_I,,',(Qol'" _ I '

C = -6w/'(cos_" +cos_:) _ , (2.143)

I)=--'.,,(Q<,) T e-Jl sin_°" J_ (Q:) (2.144)
= v_%Ccosv;+cosv.)'

,.d _" and cos 6o = sin _'_ near T, the curvature correctionand using the fact that ,. = ao

term assumes the following form:

e-jk,_ e_:j6,_/6

g_(T +) ~ -E'(Q:). O,,. (Q:)-_. +

g'(Qo). _ (Qo)-_ _X

= --gd(T) 4- _-_ E'CT),

cos 0_v/_ Im(Qo)I'''(k/6)'/'r(1/3) ,_i]

(2.14s)

(2.146)
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where _'(T)is given in (2.96). The curvature correction term cancels the singular

non-uniformterm and also compensates the discontinuity of the reflected field to

ensure continuity in the total field.

Limiting case 3a : Observation point on the deep dark side of the smooth caustic

of reflected rays.

In this last case, 7a >> 1 and using the asymptotic formulas for the incomplete Airy

functions in Appendix B, the curvature correction term assumes the following form:

if m(Qo) > O,

if m(Qo) < O,

where

{[F(_) - 1] e_X}. (2.147)

{[F(_) - 1] eiX,,)*2j_71/'
(2.148)

.2 ./_1_= ssn(¢o)"_o_:o+ C/3 + J_'yo J , (2.149]

and P(_) is the Fresnel transition function of complex argument defined in Ap-

pendix E. When the observation point is far removed from the CRSB on either side,

_(_e j_/') >> 0 with J_l >> 1 and F(_) --* 1, thus the curvature correction term reduces

to zero.

Limiting case 3b : Observation point near the CRSB.

In this case, ¢_ = 0", _(_e j'/') _ 0, F(_) assumes the following form:

F(_) = v/-_ ej,x eje_ + 1, (2.150)

and the curvature correction term in Equations (2.147) and (2.148) becomes

E:(Ps) "_ sgnC¢°)x/'_ -Z_e -_'c'_+'g>-D:/' • (2.151)
2%'/'

Now, from Equations (2.44)and (2.76)with C = 0,(2.100),and (2.110)we have

s _+s d = io ,o +jk-12 .,.2
tl tl "I

_ s-,:,' xcQ;,,_): I / (2.153)
,/; _ J IVp:,_+ _;,_ '
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and the curvature correction term near the CRSB is given by

1 ,oe -jkm re_:(P_) ~ sgnC_°)_'(Q:_)._ (Q_ / ?;-:: e _,_;mCQo)_O,
_Vp;:,+ s;:2

= _sgnC(:.)/!_(Ps),

(2.154)

(2.155)

where/_°(Ps) is the complex GO ray field. Since ¢, < 0 in the illuminated side of

the CRSB and C > 0 in the shadow side of the CRSB, the curvature correction term

indeed compensates the discontinuity in the complex ray field across the CRSB.

2.2 Derivation of the UGO/EUTD solution using

the method of steepest descent

In this section, the UGO/EUTD solution for the reflected, complex ray, and edge

diffracted fields is derived using the method of steepest descent [8] for the asymptotic

reduction of the PO radiation integral representation for the scattered field formu-

lated in the previous section. We begin with the expression for the scattered field in

Equation (2.26), that is

]_'(P) _ e -_k"/(f_, so; k), (2.156)

where a is given in (2.18)-(2.20) and f(fl, s.; k)is a stationary phase integral in the

s-plane given by

[(_,s°;k)= ]_(s)e -_kc_'+'''_ds, (2.157)
t_

$o

where f_, s°, and G(s) are given in (2.21)-(2.23), (2.25) and (2.27), respectively. Only

the case of re(Q0) > 0 win be considered here since the results for re(Q0) < 0 can he

easily obtained by letting f_ = Zexp(j27r/3) and s. = soexp(j_'/3) in (2.157). The

complex plane topology of the stationary phase integral in (2.157) for the lit side

of the caustic (_ < 0) is shown in Figure 2.6. The original path of integration, P0,

running from so to oo is deformed into the appropriate steepest descent paths through

the endpoint and the two real saddle points s,., = ±(_/_),/2, and Equation (2.157)

may be written as follows:

[(_,s.;k) = ,,(s, - s.)_ _(s)e-_'("+"')ds
21
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+ _(,1- ,°)[ 0(,) ___k,,.+.,,.>d8
4L13

+ /,, 0(8)_-_'_'+""_d_,

1 ifs_ <s. <s_
n = 2 ifsa <s_

3 if sa > s_.

In a similar fashion, in the dark side of the caustic (/3 > 0), the original path of

integration P0 is deformed into the steepest descent paths through the endpoint and

the complex saddle point s_ as shown in Figure 2.7 and Equation (2.157) may be

written as follows:

f(/_,,o; k)

(2.16o)
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(

2 if sa < 0 (2.161)m

t 3 if so > 0.

Next, it is assumed that the vector amplitude function, G(s), is regular and slowly

varying along each of the paths of integration in Equations (2.158) and (2.160), and

since the principal contribution from each integral would come from the neighborhood

of either a saddle point or an endpoint, G(s) can be expanded in Taylor series near the

pertinent critical point for each integral. Thus, using the definitions for the ordinary,

Fock-type, and incomplete Airy functions in Appendices A and B, (2.158) and (2.160)

may be written as follows:

- jv_k -'/_ d(s,) w_(k'_)_(s_ - _°)

+ k-1/'_(so)g:(k'/3_,kl,So)+O(k -_) if_ <o,

1 ifs. > s_

i = 2 ifs_<s2

3 otherwise,

/(/3, so;k) __ 2_rk-_/3G(s2)Xi(k'/3/3)u(-so)

+ k -_/_ _(So)g_(k'/_/3, k_/_so) + O(k -_) if j3 > O,

i = / 1 ifso>O

t 2 ifso < O,

(2.162)

(2.163)

where

_(s_.,) = P(t,.,)(-Z)'"_ +2_(t,,)'

_(s.) _ ¢(t.), (_ + d),
¢(to)

,_(t_,) = j_ cos01.,_(O,___):h (Ol,)

_(t,,) = cos'ol, -- +

_(t°) jk_CQo). _.o (Q°)
_,(t°) - _ '

(2.164)

(2.165)

(2.166)

(2.167)

(2.16s)

41



/_ (Q1.2)is the dyadic GO reflection coefficient given in Equations (2.60) and (2.61),

and /_u (Q_) is the dyadic non-uniform PO diffraction coefficient given in (2.115)

and (2.116). The first two terms in Equation (2.162) are the uniform contributions

from the two real stationary phase points associated with the reflected field in the

lit side of the caustic. The first term in (2.163) is the uniform contribution from

the complex stationary phase point associated with the complex ray field in the dark

side of the caustic. Finally, the third term in (2.162) and the second term in (2.163)

are the uniform endpoint contributions associated with the edge diffracted field. The

main advantage of (2.162) and (2.163) over the formulation of the previous section is

that the expression for each term contributing to the integral is independent of the

others, and also the correction to the non-uniform edge diffraction coefficient near

the optical boundaries is multiplicative rather than additive. These very desirable

features, however, come at the expense of a solution that does not contain the higher

order terms involving the derivatives of the canonical functions. The derivative terms

in the expressions of the previous section implicitly include slope scattering that oc-

curs when the source pattern has a nuU in the direction corresponding to observation

points near the caustic or the composite shadow boundary. It is believed, however,

that when slope scattering effects are not important the higher order terms are not

significant in terms of solution accuracy because they are only necessary for recov-

ering the well known non-uniform expressions for observation points away from the

transition regions. As wiU be shown later in this section, the UGO/EUTD expressions

for the reflected, complex ray, and edge diffracted field also recover the non-uniform

expressions outside the transition regions even though the derivative terms are ab-

sent. Furthermore, the results of Section 2.1 may be used to derive slope reflection

and diffraction coefficients to be used in conjunction with the regular UGO/EUTD

expressions.
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2.2.1

The UGO expression for the reflected field is as follows:

._'"(PL) "_ u,.E'(O_). "_ (O,) ; -[- ,g;

UGO expression for the reflected field

__ e-Jk._

P;
r

Y p; + s_
+ (2.169)

1 in regions I and II of Figures 2.2 and 2.3 and zero elsewhere, andwhere u_ =

u2 = 1 only in region I and zero elsewhere. The quantity 7_ (Q_,2) is the dyadic UGO

reflection coefficient and is given by

(Q1,2) : _.(Q_,2)e±e± q- _.h(Q],_)eile[_ , (2.170)

_,,h(ql,2) Rj,h e-j_ _1/4 -j(2/3).-f_l/22= .1.2 e . W_(-71,2), (2.171)

R..h = =F1, for a PEC boundary. (2.172)

A plot of the scalar UGO reflection coefficients, Rj,h, appears in Figure 2.8. Equa-

tion (2.169) shows that the complex conjugate of the UGO reflection coefficient should

be used when the spread factor pr/(p, + s_) < 0. The parameter %.2 depends on the

relative phase distance between the reflection point and the point Qo associated with

the smooth caustic and is given by

7_,2 = [3k (s'0 + R0)-(':.2 + s:.2)[] t (2.173)

The caustic point Q0 is found from the following relation:

I '(Qo) (Q0)l
+ + =0 (2.174)p,(Qo) s,(Qo) R(Qo)

which in general must be solved using a computer search procedure. Notice that in

the case of plane wave incidence with the observer in the far-zone of the scattering

boundary, Qo is simply an inflection or zero-curvature point.

When the observation point is in the deep lit side of the smooth caustic, 3'_.2 >> 1

and using the large negative argument form of the Fock-type Airy function, _0,, --,

R..h : _: 1 which is the usual GO reflection coefficient for a PEC boundary. When the

observation point lies on the smooth caustic, the reflected ray spread factors in (2.169)
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Figure 2.8: Plot of the scalar UGO real ray reflection coefficients.
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become singular where the parameter 71,2 --_ 0 in (2.171), and using Equations (2.28),

(2.31), and (2.36) :R.,h assumes the following form:

V/_+ 8; (2.175)n.h(Q0) = k_n, he-_W.(O)lm,(Q0)l-_cos0_ p; ,

m.(Q0) = c°se_a'g(Q°) - 3c°62 0_sinO_[260 p.(Qo)cose'ol + _1i_]

3cos_ 0o sin 0o 1 1]p.CQ0) cos e° +2s0
(2.176)

Hence, the singular spread factors are cancelled and the total reflected field remains

finite and agrees with the expression in (2.96) derived in the previous section.

2.2.2 UGO expression for the complex ray field

The UGO expression for the complex ray field in the dark side of the caustic desig-

nated as region IV of Figures 2.2 and 2.3 is as follows:

/!_(ps) -" _ = ,/ -P_- e-J"[',';m(Qo)<O, (2.177)
--, S (Q_,_). T"°(Q; _)vP:

where f,,_/(p_,_ + s;,_) < 0 in this case and _°(Q_,) is the UGO dyadic complex ray

reflection coefficient given by

n:,.(Qb)

R:,.

• ,o(r)_ _" _ ° ° ^_^_ (2.178)

7r 114 e(2/a)_.a/_: 2R.,.v/-_ % Ai(%), (2.179)

= _1, for a PEC boundary. (2.180)

A plot of the scalar UGO complex ray reflection coefficients, 7_:,,, appears in Fig-

ure 2.9. The parameter 7. depends on the relative phase distance between the complex

reflection point Q_ or Q_ and the point Q0 associated with the smooth caustic and is

given by

%- [3k (s' 0 + R0)- (s::_ + s:,_)]_ (2.181)

When the observation point is in the deep dark side of the smooth caustic, % )) 1

and using the large positive argument form of the ordinary Airy function, _:, --*

R:., -- _:1 which is the complex GO reflection coefficient for a PEC boundary.
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2.2.3 EUTD expression for the edge diffracted field

The EUTD expression for the edge diffracted field is as follows:

. _ . e-Jhsa d

f_,"(p) _ E'(Qo). ,D (Qa) _ '

where D (Qo)is the EUTD dyadic edge diffraction coefficient given by

z_(Q.) v.Cv°,v°)_l' + v_(v°, Vo)^'^"'

- cos T cos( )

.7"(%, Ca) is the EUTD transition function given by

_'(%¢) = J(_ + C) g;(%Oe_(,,+e'),

1 if_>(-7) 'n }
i = 2 if { < _(__,)_/2 ;

3 otherwise

{1i = ; forT>0.
2 if_<0

for 7 < 0, or

The parameters 3'° and ¢o are given by the following expressions:

'U 0

% _ -ua k'/3 (cos _'o+ cos so0)
IL,,(_o',,,_o,,)1'"

,.,° = sgn[L_(,e',_°)],

Im.,(so',_o,,)1'/_

+1 if Qo 9 C-1 if Qo E c,

_,ok'"x/Icos¢0+ cos¢o- cos_: - cos_ol

where Ld(_', _o) is the EUTD distance parameter and is given by

i I.(v°,v.)

+

+

1 t /_:

_(sin _. + sin _o) ,(Q.) +

3 sin _'o cos _'o 1

2s'

3 sin _oocos _o

2< MQo)

cos_'o+ cos_

2p_(q.)

MQ°)
1

sin _o',,]
--+ s',,j

sin _ 1
_+ ,_j-
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Figure 2.10: Plots of the real and imaginary parts of the EUTD transition function

in the i_rst quadrant of the _¢-plane.
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Figure 2.11: Plots of the real and imaginary parts of the EUTD transition function

in the second quadrant of the 7C-plane.
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in the third quadrant of the "7C-plane.

5O



O -00

• 0 o-

q& 0 o

4,

Figure 2.13: Plots of the real and imaginary parts of the EUTD transition function

in the fourth quadrant of the 7(-plane.
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It is understood that when Ld('P'a, _0o) < 0, the EUTD transition function in (2.184)

should be replaced by its complex conjugate version. Plots of the real and imaginary

parts of the EUTD transition function in the four quadrants of the '7_-plane appear

in Figures 2.10- 2.13. One can observe that the EUTD transition function exhibits

three lines of discontinuity. The first discontinuity occurs along the _ = 0 line which is

the boundary between the first and fourth quadrants of the '7_-plane, and physically

corresponds to the CRSB. Figures 2.10 and 2.13 show that only the imaginary part of

the transition function is discontinuous across the CRSB while the real part remains

continuous. Also, as "7 >> 1 the discontinuity diminishes. This transition function

behavior makes sense physically since "7 >> 1 corresponds to the deep dark side of the

smooth caustic where the complex ray field becomes vauishingly small and accordingly

its discontinuity across the CRSB should also diminish. The second discontinuity of

the transition function occurs along the _ = (-"7)_/_ line in the second quadrant of the

"7_-plane as shown in Figure 2.11. This line physically corresponds to the ISB. Finally,

the third discontinuity of the transition function occurs along the _ = _(_"7)1/_ line

in the third quadrant of the "7_-plane as shown in Figure 2.12. This line physically

corresponds to the RSB.

Next, the behavior of the EUTD transition function for observation points in the

deep lit side of the smooth caustic will be examined, so that a comparison between

the EUTD edge diffraction coefficient and the original UTD expression [4] can be

made. In this case the EUTD transition function assumes the following form:

f(_ _) - 1

Y("7°'¢°) ~ ("7° + ¢:) 2_(-%),/, + 1, (2.191)

where the parameter y is given in Equation (2.122). When the observation point is

away from the optical boundaries, [y[ >> 1, the UTD transition function F(_/') ---* 1,

and .T'('7.,_.) ---* 1. Hence, the EUTD edge diffraction coefficient assumes the ex-

act expression outside the transition regions associated with the optical boundaries.

When the observation point is near an optical boundary, we have that '7. + _

27/(-%) '/' and therefore 3r("7o,_o) _ F(7/'), with 7/reducing to the following expres-
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slon:

• C_'o,,po)=

-_-(cos ' _/ 2k_o + cos_o) I_(_'o,_o)I'
sin' ¢p'_ sin' _sin _' + sin _. + __ +

Near the RSB, _o _ _r - _' and thus

\p: + s_) 2

Near the ISB, p= _ 7r + p' and thus

(2.192)

(2.193)

and (2.194)

= kL ra(_" + _.). (2.195)

( 1) (_" + _) and (2.196)_(_:,_o) _ _-+ _ coe 2 '

7I' ,_ 2k\s,.+s_]COS' _-

where L"" are the UTD distance parameters. Both L'," and a(tp'q-_p) are defined in [4].

The above results indeed show that near the optical boundaries the EUTD transition

function is identical to the UTD transition function. Therefore the two diffraction

coefficients should give equivalent results despite the fact that the correction near the

optical boundaries is applied differently in the two methods. In the UTD case, two

transition functions with different arguments are used, one for each of the two terms

in the non-uniform diffraction coefficient. In the EUTD case, only one transition

function is used and operates on the entire non-uniform diffraction coefficient.
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Chapter 3

Near-Zone Uniform Asymptotic

Analysis and UGO/EUTD
Formulation for the Scattered

Fields near a Three Dimensional

Smooth Caustic and Composite

Shadow Boundary

In this chapter, the behavior of near-zone high frequency scattered EM fields near

a three dimensional smooth caustic and composite shadow boundary is investigated,

and a UGO/EUTD solution is developed for the description of the scattering mech-

anisms. The analysis for the 3-D case is very similar to the 2-D case of Chapter 2.

The three dimensional surfaces considered in this chapter are assumed to be rotation-

ally symmetric or slowly varying in the transverse direction, with the 2-D boundaries

of Figures 1.1 and 1.2 being the generator curves representing one of the principal

coordinate curves of the 3-D surface.

In order to further simplify the asymptotic analysis, it is also assumed that the

plane of incidence defined by the incident ray direction and the normal to the surface

at a real reflection point coincides with one of the principal coordinate curves of the

surface. Although this is a very special case in a general scattering problem, the

derivation of key expressions in the asymptotic analysis such as the reflected ray

spread factors will be kept as general as possible. Because of the highly local nature
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of high-frequency fields, the results for this special case will remain valid for general

3-D boundaries that are not necessarily rotationally symmetric with the plane of

incidence not necessarily coinciding with one of the principal coordinate curves of the

surface.

The PO approximation is also employed for the 3-D case. The problem formu-

lation and the derivation of a uniform asymptotic solution that remains valid near

a three dimensional smooth caustic and a composite shadow boundary is derived in

Section 3.1 using the Chester expansion for the asymptotic reduction of the PO ra-

diation integral. In Section 3.2 the method of steepest descent is employed for the

asymptotic reduction of the PO radiation integral and the UGO/EUTD expressions

for the reflected, complex ray, and edge diffracted fields are derived.

3.1 Derivation of a uniform asymptotic solution

using the Chester expansion

The electric field/_s which is scattered by a 3-D surface containing an edge illumi-

nated by a ray optical field due to a point source at P' and observed at a point P

exterior to the surface as shown in Figure 3.1 can be expressed in terms of the usual

radiation integral over the induced current f on the surface S as follows:

ff e-Jk_jkZo [_ × r_×i(Q')] --h--as', (3.1)/_'(P) _ 4---_
S

where Q' is any point on S,/_ = Q'P, R = [/_[, R = R/R, and P cannot be too

close to S for (3.1) to be valid. As in the 2-D case, the PO approximation to (3.1)

is employed using the GO currents of Equation (2.2), where fi' is the outward unit

normal vector to S at Q'. The incident magnetic field at Q' due to the point source

at P' is expressed ray optically as follows:

#'(Q')
e-Jksi

Z°_(s'ixA) s' ; _'-A=0, (3.2)

= Zo_'× E'(Q'), (3.3)

= _(Q,) e-J'"
s' ' (3.4)
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Figure 3.1: A smoothly indented three dimensional surface containing an edge.
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where A_ is the vector source pattern, ;' = P'Q', s' = [K'[, and _' = K'/s'. Thus,

using the PO approximation Equation (3.1) is given by the following stationary phase

integral:

where

jk × × Z(r, (3.6)
2_r s' R '

s'(l', r') + R(g', r') , (3.7)

and l', r' are the principal coordinate curves of the 3-D surface S as shown in Fig-

ure 3.1. It is also assumed in (3.5) that the edge is located at (g_,r'), and therefore

it extends along the principal coordinate curve v' which is always orthogonal to g'

and assumed to have a slowly varying radius of curvature. In order to simplify the

analysis, it is further assumed that the plane of incidence defined by the incident

ray direction and the normal to the surface at the reflection point coincides with

the principal coordinate curve l' on the surface. Although this situation occurs only

in special cases, it is chosen because it greatly simplifies the asymptotic reduction

of (3.5). Nevertheless, due to the highly local nature of high frequency fields, the

results for this special case can also be applied to general 3-D boundaries that are

not necessarily rotationally symmetric and the plane of incidence does not necessarily

coincide with one of the principal coordinate curves of the surface.

The phase function in (3.7) contains two real or complex stationary phase points

corresponding to real or complex reflection points QI and Q_ on S that are arbitrarily

close together or to an edge diffraction point Q_ as in the 2-D case of Chapter 2. The

stationary phase condition is given by

g'-V¢(/',r') = 0 and ?'. V¢(g',r') = 0, (3.8)

where l", ?' are the principal surface directions, and both equations in (3.8) must

be satisfied simultaneously at the stationary points. With the assumption that the

plane of incidence coincides with the principal coordinate curve g', Equation (3.8)

yields stationary phase points for which r' = % along with g' = g, for Q1 and g' = g2
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forQ2. Therefore, the coordinates of the stationary phase points are Q_ = (l_, r,) and

Q2 = (12,_'0) with the edge diffraction point coordinate being Qo : (lo,r0). Then,

using a local quadratic approximation, the phase function in (3.7) may be written as

follow s:

- ,-.)¢,Cl,,.) + _(,- -¢(l',',-') ¢(l','r.) ÷ ('," " ' 1 ' "r.)_8.,(t','.),

where the notation a2¢(x"_') _ " 'ax,av, : _,_(z ,y') was used in (3.9).

Equation (3.5) we get

_'(P) _ f_'
la

where

(3.9)

Upon inserting (3.9) in

¢_(/', r.) (3.11)
¢(t',r.) = ¢(r,r.) 25_(l',_.)'

¢(/_.,,r.) = ¢(l,.,,r.), (3.12)

¢_(l',r0) (3.13)
_(r,r.) = _. 2__(l',_.)

When the plane of incidence coincides with the principal coordinate curve l', ¢_ (t', _'0) --

0, V g', and thus ¢(/',r,) = ¢(l',r.) and {(/',ro) : r°, V l'. However, we will keep

all expressions as general as possible since we would like our results to remain valid

for an arbitrary plane of incidence, in which case ¢_(g', r,) = 0 only when l' = l_,2

from the stationary phase condition. It is also assumed in (3.11) and (3.13) that

¢_(/',r.) _ 0 V l'. An additional necessary condition is the matching of the phase

function when one or both reflection points coincide with the edge diffraction point,

that is

¢(1_, r,)= ¢(t,.,,r°). (3.14)

From (3.11) Equation (3.14) is satisfied only if _(l_,ro) = 0, and using (G.81) this

edge condition can be expressed as follows:

(_. - _'o) . _o = 0, (3.15)

where ?. is the unit edge tangent vector at Q.. Equation (3.15) can be used to find

Q_ and is recognized as Keller's law of edge diffraction. An additional consequence
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of Equation (3.15) used in (3.13)is that

_(to,r.) -- r.. (3.16)

Next, the inner integral in (3.10) denoted as _(l', %) can be evaluated using the

stationary phase method [8] which yields

£(r,_.) ~ 2_ (3.17)

Hence, employing (3.17) in (3.10) the 3-D analysis effectively reduces to a 2-D situ-

ation with/_'(P) given by

oo

la

where

e -ik_(e'') , (3.18)

•' RV/&,(t',¢.)
, (3.19)

and the phase function _b(l', %) is given by Equation (3.11) and has stationary phase

points at *' = *1._ corresponding to Q_a, that is 6(tla,T0) = 0. Therefore, the asymp-

totic reduction of the integral in (3.18) would foUow the same steps as the asymptotic

reduction of the integral in (2.7) for the 2-D case.

The phase function _b(*', %) is then expanded in a Taylor series around the point _0

which is a stationary point of the derivative of the phase function, that is _(_0, %) = 0

and must necessarily lle between the two stationary phase points l_ a. Thus, using a

local cubic approximation, _b(l', %) may be written as follows:

,_(e,_-.) _~ ,_(to._.)+(e-to)6Cto,_.)+ (t'-,°)_" _;(to,r.)

+ (t,- to)"
_! _ (to,%). (3.20)

A phase matching condition is also required at the caustic point Q0 for the case when

l_,2 --_ t0 corresponding to observation points at the smooth caustic; therefore we have

¢(10,_.)= ,_(l,,,,_.), (3.21)
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which is satisfied only if ¢.(lo, %) = 0 in Equation (3.11). Using Equation (G.19) this

caustic condition can be expressed as follows:

(]_o- _'_)"?o= 0. (3.22)

Then, using Equations (3.11) and (3.22), ¢(to,r.) and its derivatives in (3.20) are

given by:

i
¢(lo,ro) = 80 +Ro, (3.23)

_(to,ro) = ¢1o(Qo), (3.24)

@to,_.) = ¢,o(Qo) ¢_'(Q°)
¢o_(Qo)-0, (3.25)

[ *,,(Oo)¢_,(Oo)]
- ¢,,(Qo) 3¢,,(Qo) -
¢ (to,_.) = ¢,o(Vo) ¢o_(Qo) ¢o,(Qo) J

= _(Qo), (3.26)

Cm.CQo)_ 0m+"¢(t"_')c_o,,,_= _gt"'0r'" " (3.27)

Using (G.18), (G.19), (G.35)-(G.37), and (G.59)-(G.62) the derivative functions ¢_o,

¢2o, ¢,_, ¢o_, $_o, _b2,, and ¢,2 at Qo = (to, 7".) can be expressed in terms of the geometric

parameters of the surface S at Qo, that is

1- (_'o • l'o)'
_,o(Qo)= _(Qo)(_-_)._o+ +

8_

¢,,(Qo) = -
' Ro8 o

¢o_(Qo)=

¢,o(Qo) =

¢,,(Qo)

+

+

•,(Qo)(_._o)-

(3.28)

1 - (j_o • l'o) '

Ro , (3.29)

pto

(3.30)

(3.31)

, (3.32)

60



¢,,(Qo)

+

+

_-eo

P_

Ai "_08 o

i
8 o

_o._o

,o)']+ Ro

I ,(Oo)
1 - 3 (/_o • ?o)'

Ro

(3.33)

, (3.34)

where l'o, ?o are the principal surface directions at Qo, _o is the outward unit normal

at Vo, and a,,_(Qo) = 1/R,.,(Qo) are the principal surface curvatures at Qo along

the l'o and Vo directions, respectively. The caustic point Qo is therefore found from

Equations (3.25) and (3.29)-(3.31), that is

¢_o(Qo)¢o2(Qo)-¢_l(Qo)=O, (3.35)

and must satisfy the caustic condition in (3.22). Notice that in the case of plane wave

iincidence with observation in the far-zone of S, that is so, R0 _ _, Q0 is a stationary

point on a zero curvature line and satisfies tel(Q0) = 0 along with (3.22). Also worth

noting is the fact that when the plane of incidence coincides with one of the principal

surface directions, the cross-derivative functions CH (Q0) and either ¢_, (Q0) or ¢_(Q0)

reduce to zero. This is also true for the plane wave far-zone scattering problem where

all three cross-derivative functions reduce to zero for any arbitrary plane of incidence.

Next, making the usual linear transformation, the stationary phase integral of

Equation (3.18) transforms to the following expression:

_'o(P) ,._ e -jk" ] ¢(s)e -j*(_°+°'/') ds, (3.36)

where

i
= s o + Ro, or (3.37)

1

= _[(s i+s[)+(s_+s_)], or (3.38)

, , + __(__)s/,= s,. 2 + s_._ , or (3.39)

= s'. + s _.- _s. - s:/3, (3.40)
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----- " -- , or

/-- - _ [(,'_+,;) - (_i+ _;)] . or

_(_) -, _'= GCt,r.) ds '
1

d8 - '

[

J +ifQo 9,9

! - if Qo E ,9,

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

and the proper branches for 8, sa, and d2'/ds depend on the sign of m(Qo) given

in (3.26). Also, "oo" = ooexp[-jarg(_'/ds)]. The asymptotic evaluation of (3.36)is

then carried out by employing Chester's expansion [7], and foUowing the same steps

as in the 2-D case of Chapter 2 the scattered electric field is given by

+

+

__.o_....) _ce°,_.) j (_o+¢5o)]jk¢(to, r.) + v/g(_ + 6:)
J

,/_ [_o_,(%¢o) rio

jk_(lo,_.) v_(_ +---¢o)J

if m(Qo) > O, (3.4?)

if m(Qo) < 0, (3.48)

where Ai(7,_o) is the incomplete Airy integral defined in (2.48), 7 = k2/'_,

_o = k'/'So, and a, go, and go are given by the following expressions:

i 8d= _o+ o- _k-1(_ + ¢_/3), or

, . + 6k-1_(__),/_

= sgn[m(Qo)],

- (-'Y)_ _(t.,r.)| 2
2 _ _(t,,_.)

6

bo + _(t,,_.) _;(t,,_.) "

(3.49)

(3.50)

(3.51)

(3.52)
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From Equations (3.13)and (3.19), G(l,.2,r0) may be written as follows:

G(i,.,,r,) = jk cos01.,A(O,,, ). h (O,,,)

' ._" _(t_,,,,'.)81,2 1,2

where/_ (Q,,2) is the dyadic GO reflection coefficient given by

A_ A r
= R°e l(Q,.2)e ±(Q_.2) + R,,EII(Q_,2)_(Q_.2),

= T1; for a perfectly conducting boundary.

From Equation (3.11), ¢(l,.2,r°)is given by

_,,(k,2,r.)__(l__,_.) ""
/_(l_2,r.) = $_(t, 2,_.)

Using Equation (G.69), (3.56) can be written as follows:

(3.53)

(3.54)

(3.55)

(3.56)

_(l,,2,_.) - ..c°s' oi,2¢.(k2,_.) ('1.2 + pil,2)(_1,2 + p:!.2) ' (3.57)

are the radii of curvature of the reflected wavefront given in (G.70)where p;..

or (G.71), and 01,2 is the usual angle of incidence (between the incident ray and

the outward normal of S at Q,.2). Thus, using (3.53) and (3.57) E0 and b0 may be

_/_e_(-=)_
"_(Q')-?_(Q') V/i P;'p:'s; p;, + s[)(p;, + s[)

P;2 + s'_(,_'_,_n_+ s;) "
(3.58)

written as follows:

bo

±
i
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Also, from Equations (3.11), (3.15), (3.16), (C.18), (C.20), (G.82), and (G.83) we

have that

i a (3.59)¢(to,_.) = s. + s.,

(b(la,r°) = (_'ia--_'_)'&=--sinvqa(COS_'+COS_a), (3.60)

°,,)ex_±A- " =J II IIJ , (3.61)
8°

fla. _-ia = -- sind° sin _',, (3.62)
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fi° •_'_ = sin _. sin _o°,

_b_(l.,r°) = sin'S. 1 + ,

1 1 _. • (_._ - _'.)
- +

p d s_ R. sin 2 _o

(3.63)

(3.64)

, (3.65)

where J. is the angle of diffraction as shown in Figure G.3, _o'oand _. are the angles

between t'. and the projected incident and diffracted ray directions in the plane per-

pendicular to 9o as shown in Figure G.4, _d and ^i.de _l are the unit vectors fixed in the

incident and diffracted rays as shown in Figure G.3, pd is the distance between the

caustic at Qa and the second caustic of the diffracted ray, and R° > 0 is the radius

of curvature of the edge at Q_.

Finally, using (3.59)-(3.64) the scattered electric field is given by

g'(P) ~ -_ ,_o_'(-r,¢°)+ fi0 _'(-r,¢°)

+ {Jg'(O_)._oo(O.)_ P_s_Co."+ <)

+ _J e-t"" [[_7+-+f:_g°j].}e-_"'_, if m(Qo)> 0,

e - J k_____a

+ E (O.)./_,,. (O') s..(pd + s d)

L7+c

(3.66)

(3.67)

where/_.u (Q.) is the non-uniform PO dyadic edge diffraction coefficient for oblique

incidence and is given by

/3o. (Qo) D.(to ,_.;_.) ^' ^" ' ^' ^ (3.68)= ' exej. + Dh(to.,_o.;_°) eii e _ ,

e-J _ sin _o.
D.,.(_'., _.; _) ±sin _°v_ (cos_: + cos_°) " (3.69)

The reflected, complex ray, and edge diffracted field components in (3.66) and (3.67)

can then be separated as usual using the properties and complex plane topology of

the incomplete Airy integral in Appendix C.
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3.1.1 Reflected field solution on the lit side of the caustic

From (3.66) and (3.67) and using the appropriate form of the incomplete Airy integral

in Appendix C, the reflected field on the llt side of the caustic is given by

_-_ ' [£ _. w,(-_,) - jE _;" w;(-_,)]g'(P_) ~ 2 {_"e-"°'

- u_e-j'o_[£_'_,'w_(-.y,)-jE.r:'"w;(-._,)]}, (3.70)

if m(Qo) > 0,

E_(PL) .v e-i_ ' ,, w;(-_,) + jE %'" w','(-_,)]

- u2e-J*_'_[.4,7_/'W;(-7,)+jB,7:'"W;'(-7,)]}, (3.71)

if m(Qo) < O,

where Wl,2 are the Fock-type Airy functions [16], ul.2, 7t, and al._ are the same as

in (2.84)-(2.86), and ._, Bt are given by

: X(Q1 (Q,) f_lp:,
(P_l + "r_CI'}r'I,Ikr'_rl -_- ";)

-t- "A'(Q'I-sR (o:) i" P;_P:_ (3.72)(p;,+ s;)(p:,+ .;)
The first term in (3.70) and (3.71) is the uniform contribution from Q1 where the

second term in (3.70) and (3.71) is the uniform contribution from Q2.

3.1.2 Complex ray field solution on the dark side of the

caustic

From (3.66) and (3.67) and using the appropriate form of the incomplete Airy integral

in Appendix C, the complex ray field on the dark side of the caustic is given by

E°(Ps) .v jv,_e-Jk'_L, [_.TJ/'Ai(%)q: g. 7:-_/'Ai'(7,)] u(-(=) (3.73)

for m(Qo)<O,

where Ai(%) is the ordinary or Miller-type Airy function, % and a_._ are the same as

in (2.98) and (2.99), and ._, B° are given by

._ (p;;+ 8;o)(p:;+ .;o)
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8, (p_ + 8;o)(p;;+ 8;°)

Although the values from both complex reflection points appear in (3.73), in the deep

dark side of the caustic only the contribution from one of the complex reflection points

is involved since the contribution from its complex conjugate counterpart violates the

radiation condition and produces an unbounded result.

3.1.3 Edge diffracted field solution

The edge diffracted field is written as foUows:

/_d(p) =/_d (p)+/_(p), (3.75)

where /_d (p)and gd(p)are the non-uniform and curvature correction terms of the

edge diffracted field, respectively. From (3.66) and (3.67) and using the appropriate

expression for the incomplete Airy integral in Appendix C, they are given by the

foUowing expressions:

~ _'(Q°). _ou (Q°),/;_, _. e-_'_- (3.76)V otP_ -_ 82)

~ e-_("_+'_) X_ e_('°_°+a/_)g'(7.,(o ) + 7.

+ j_ [e(.°,+_.,)_0 g.(. t, Co ]}L 07. ""'°' + _ '% + (_ (3.77)

if m(Qo) > O,

/_(P)

i

i

~ e-i_('_+'2) { _d [e-_(,-¢-+d/_)g_(7o, (.)

- j._,,[e-J(',,,c,,+_/s)o-_gi(7.,(,, )

if ra(Qo) < O,

1 if (° > (-7o) _/_ /

= 2 if (°<-(-7°)_/_ / ifT°<O, or3 otherwise

= if% > 0,
2 if(. < 0

J

_.+C:

+ _(" }7o+(2 '
(3.78)

(3.79)

(3.80)
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where %, _, Ad, and Bd are given by

U0

1

c° = =ok
f

,j +1 ifQ0_S

-1 if Q0 E S,

2_ _ (-%)-'_'E if% < 0,

(3.81)

2 _ (3.82)
,n(Q0) '

(3.83)

(3.84)

if % > 0. (3.85)

Notice that the curvature correction term of the edge diffracted field contains infor-

mation about the reflection points through the vector quantities A_ and Bd given

in (3.84) and (3.85) above. Also, D,,u is given in (3.68) and (3.69), and James's cor-

rection factors [20] given in (2.117) and (2.118) can still be employed to improve the

PO diffraction coefficient away from the optical boundaries.

3.2 Derivation of the UGO/EUTD solution using

the method of steepest descent

In this section, the UGO/EUTD solution for the reflected, complex ray, and edge

diffracted fields is formulated using the method of steepest descent for the asymptotic

reduction of the PO radiation integral representation for the scattered field formulated

in the previous section. We begin with the expression for the scattered field in (3.36),

that is

j_°(P) .._ e -i_°/(fl, s.; k), (3.86)

where a is given in (3.37)-(3.40) and/(fl, s_; k)is a stationary phase integral in the

s-plane given by

I(fl, so; k)=/_(s)e -j_(_''+'s/") ds, (3.87)
$tl
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with f_, so, and _(8) given in (3.41)-(3.46). Only the case of m(Qo) > 0 will be

considered here since the results for m(Qo) < 0 can be easily obtained by letting

fl = _exp(j2_r/3) and 8, = s. exp(j_r/3)in (3.87). Then, using the same procedure

as in section 2.2, that is deforming the original path of integration in (3.87) into

the appropriate steepest descent paths through the endpoint 8, a_d the two real or

complex saddle points sl,2 = +(_f_)_/2 as shown in Figures 2.6 and 2.7, and expanding

the amplitude function _(s) in Taylor series near each pertinent critical point, (3.87)

may be written as follows:

where

/(f_,8_; k)

n

f(f_, 8,; k)

m

_- -Jv_ k-'" #(,_)w,(k'"_)_(81 - 8.)

+ jv'_k-'"g(8,)W,(k'"Z),,(8,- 8.)

+ k-'" #(8o)g:(k"%k"%) + O(k-') if_ < 0, (3.88)

1 if 8. > 8_

= 2 if 8, < 8, (3.89)

3 if otherwise,

-- 2_r k -113 "_ " ']_~ _(8,)AICk _)_(-8°)

+ k-"" g(8°)g'(k'"Z,k'%) + ock -_) if _ > 0, (3.90)

/ 1 if 8, > 0 (3.91)

t 2 if 8, < 0,

g(St,,)

¢(8.)

G(ll,,, T')

_(tl,,r.)

_(to,r.)

I 5=2= e/_l" ' "r')(--_ll/' _(l=: "r.) '

_(t.,_.) 8'
- _(t.,r.)CZ+ °),

j.j/_ cos0_,fi(Q,,). _ (Q,,,)
'

( )( 1)°o,.0:..!÷? !÷__
-- _I'" (ll.' ' _r" ) C _ C PrlJ'2

jkX(Q.)._. (O.)i o_- ,;! 8:(p._+ 8:)'

(3.92)

(3.93)

(3.94)

(3.95)

(3.96)
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with/_,, (Q,) given in (3.68) and (3.69). The first two terms in (3.88) are the uniform

contributions from the real reflection points in the lit side of the smooth caustic, where

the third term in (3.88) is the uniform edge diffracted field contribution in the lit side

of the smooth caustic. The first term in (3.90) is the uniform contribution from the

complex reflection point in the dark side of the smooth caustic, where the second

term in (3.90) is the uniform edge diffracted field contribution in the dark side of the

smooth caustic.

3.2.1 UGO expression for the reflected field

The UGO expression for the reflected field is as follows:

_/i P;'P;' e-_*°r

)V/( (3.9;')

where ul = 1 if Q, E S and zero otherwise, u2 = 1 if Q_ E S and zero otherwise, and

p;,, are the radii of curvature of the reflected wavefront given in (G.70) or (G.71).

The UGO dyadic reflection coefficient, 7_ (Q,,_), is given by

(Q,,,) : :g.(q,,_)_z'_ + 7¢.(Q,,=)_,'lz._, (3.98)

where n,.h(Q1,2) are given in (2.171)-(2.173). The caustic point Q0 for the 3-D case

is found from (3.22), (3.29)-(3.31) and (3.35), usually through a computer search

procedure. In the case of plane wave incidence with the observer in the far-zone of S,

Q0 is simply an inflection or zero-curvature point satisfying n, (Q0) = o, where _ (Q0)

is a principal surface curvature at Q0. When the observer is in the deep lit side of the

smooth caustic, _,,h ---* R..h = =F1 and (3.97) becomes the usual GO expression for

the reflected field. When the observation point lies on the smooth caustic, we have

that p_l._ = -s_, 2 and the spread factors in (3.97) become singular. In this case the

UGO scalar diffraction coefficients, 7_,,h, assume the following form:

k&K _ e-_W'(0)Im(G)l-_ I (P;o + <) (P;o + ";)'R.,,,(Q_,=)= (3.99)
P;oP:o '

!

where m(Qo) is given in (3.26), and thus the singular spread factors are cancelled and

the reflected field remains finite.
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3.2.2 UGO expression for the complex ray field

The UGO expression for the complex ray field in the dark side of the caustic is as

follows:

E_(Ps) '--, E,'(Q;..). "_°(Q;a)I (p;_:,o

pg,_p;_,,=

+ 1.2] P:_._2 + 1.2]
; m(Qo),<o,

(3.100)

where p_,_ are the radii of curvature of the complex ray wavefront and are simply ana-

lytic continuations in complex space of the usual real ray wavefront radii of curvature,

p_._, given in (G.70) or (G.71). The dyadic UGO complex ray reflection coefficient,

7_°is given by

n:= e_ + nl _,^'...._,, (3.1Ol)

where 7_:.. is given in (2.179)-(2.181). When the observer is in the deep dark side of

the smooth caustic, 7_:,h(Q:,2 ) --+ R:, h = =[=1and (3.100) reduces to the usual complex

GO expression for the complex ray field.

3.2.3 EUTD expression for the edge diffracted field

The EUTD expression for the edge diffracted field is as follows:

_,d(p) ,._ f_,,(Qo). ._ (Q.)_ pd e -jk'_+

where _ (Qa) is the EUTD dyadic edge diffraction coefficient given by

z_ (Qo) V.(Q.) ^' ^_ ^^= e _e_ + O,(Q.) _ ;._,

-e-J{ [ 1 1 ]

(3.102)

(3.103)

(3.104)

.T(%, _,) is the EUTD transition function given in (2.185), _o'= and _o= are the angles

between the projected incidence and observation directions on a plane perpendicular

to go (unit tangent vector to the edge at Q=) and t'o (= go × K,, _= is the outward unit

normal of S at Qo), _9, is the usual angle of diffraction, and pd is the distance from

the caustic at Q° and the second caustic of the diffracted ray given by

1 1 _. • (gd -- a")

pd -- s_, + R. sin'_o ' (3.105)
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where_ is the associated unit normal vector to the edge at Q. directed away from

the center of curvature (in general _ _o), and R_ > 0 is the radius of curvature of the

edge at Qa. The parameters of the EUTD transition function % and _a for the 3-D

case are given by the following expressions:

% _ _u_k2,,_ sindo(C°S_'o 4- cOS_o)
It,,(_,',,,_o;#o)1" '

_o sgn[ _(_o,_o;_o)]

_° _ _0k._ Isin_0(cos¢0+cOS_o)-sin_o(cos_,'o+cos_o)l "_
ILd(cp', _p,,;'#o)l 1/,

(3.106)

(3.107)

, (3.108)

g

+1 if Qo 9 S (3.109)
Uo

( -1 if Qo E S,

where the angles 0o, _'o, and _o associated with Qo are defined in the same manner as

0_, _o', and _oa associated with Q°, and Ld(_o'_, _; #a) is the EUTD distance parameter

given by

Ld(Vo,Vo;o)

m,o(Qo) =

+

+

m.o(qo) =

+

+

+

m,,(Q°) -

1
{m.o(qo)m_o,(Qo)- m,,(Qo)

[3m_,(Qo)mo:(Qo) - m,_(Q.)m,,(Qo)]} ,

sin' 0',o
_ (Qo) sin Oa(sin _o:+ sin _o_)+

sin' 8lo

tcos 8,ocos 8'o cos 8_ocos &o
¢

s'o s_

_, (qo) sin _o(sin _o:+ sin _Oo) +

COS 01
. la

s
8 a

COS Ota

3 d
o

cos O' [-'° _h(Q,,)sinO,,sin_',, +
s'o

i
8 a

sin _ O'o

8 i
a

sin' O,o

8d
Q

(cos 0,° + cos._o)4(,_o)

sin<(sin¢. + sin

-- 3_(Q.)sin_osin_" + s_ j

[-- 3_;,(Qo)sin_°sin_oa + s._ J ,

1-3cos'8' ]

Ja:

(3.110)

(3.111)

(3.112)

(3.113)

(3.114)
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cosS_.[ 1 - 3c°s2 01"] (3.115)+ . I¢_(Qo) sin _o sin _o. + d '
8a "qa

- th (Q.) sin do sin _" + - "°
s" s'_

cos 0,° [ 1 - 3 cos _ 8.° ]+ _2(Qo) sin _a sin _oo + , (3.116)
s_ L s_ J

mo(Qo) sin'S. ( 1 _): + , (3.117)

where 0't .... are the angles between the incident ray direction at Q. and t., _. (principal

surface directions at Q.), respectively, Ot.... are the angles between the diffracted

ray direction at Qo and t'o, q., respectively, and _¢,,2(Q_) are the principal surface

curvatures at Q. in the direction of l'., e., respectively. It is also understood that

when Ld(9'o, _°;_.) < 0, the EUTD transition function in (3.104) should be replaced

by its complex conjugate version.

In the derivation of the results for the 2-D case in Section 2.2.3, it was shown that

when the observation point is on the deep lit side of the smooth caustic and near an

optical boundary, the EUTD transition function assumes the following form:

Y(%,¢.) _ F(_fl), (3.118)

where F(z) is the UTD transition function and r/is given by

7o + C k_/' sinO.(cos_o' + cos _.)

7/_ 2(_7.)_/' _ 2(-%)'/'lLd(_o:,_oo;0.)l'/'" (3.119)

From (3.106) and (3.110)-(3.117), near an optical boundary on the deep lit side of

the smooth caustic, Ld(_o'., 9.; O.) assumes the following form:

Ld(_'o,_°; _.) - (--_-)"iv_ [m,o(O.)mo,(O.)__- vs;1 CO")] a/' (3.120)

Near the RSB, to. _ 7r - _o' and using (G.69) we have

m'°(Q"m°'(Q")-m_t(Q") m" sin'_°c°s'CP'_-_°") (1)2-_+_-

(1+;i:) ( 121,
Also, near the RSB vs.(Q.) is given by

vs.(O.) _ sin2,L(_ 1)+ (3.122)
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where from (3.105)

I _ i 2(_o._.)(_'o._o) (3.123)
p: s_ Ro sin__o

Thus, using (3.119)-(3.122),_/_near the RSB isgiven by

7/2_2kcos_ _'o+_o o(PO-r o)V_.t'_o Vol =kL,a(_,o+_.). (3.124)
2 p:(p;,,+ <)(p;o+ _:) j

Near the ISB, _° _ _r+ _'oand using (G.38)-(G.40) the quantity m2omo2 - m_, at Qo

assumes the following form:

from (3.105) and rn.(Qo)is given byAlso, near the ISB pd = So

rno(O°) ._ sin' tqa (_ + -lb_) •

Thus, using (3.120), (3.125), and (3.126), r/_ near the ISB is given by

rp _ 2k cos 2 _o _oa ° o = kLia(_o, °( ,'o;;! j - *°)' (3.127)

where L _'r are the UTD distance parameters for spherical wave incidence. Both L _'_

and a(_'o + _o) are defined in [4]. The results in (3.118), (3.124), and (3.127) demon-

strate that near the optical boundaries in the deep lit side of the smooth caustic, both

the EUTD transition function and its argument reduce to the conventional UTD for-

mulations as expected.
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Chapter 4

Plane Wave Scattering from

Polynomial Surfaces

In this chapter, a UGO/EUTD solution for the plane wave scattering and diffraction

from polynomial surfaces is developed. The derivation of the solution follows a similar

procedure as the uniform asymptotic analysis in Chapters 2 and 3, with a generalized

form of Chester's expansion being employed for the asymptotic reduction of the PO

radiation integral. The observer is assumed to be in the Frafinhofer region of the

scatterer, and due to the symmetry introduced by this assumption the alternative

method of steepest descent employed in Chapters 2 and 3 yields the same expres-

sions, except for the edge diffracted field solution where the resulting edge diffraction

coefficients are slightly different.

The predominant scattering contribution from polynomial type surfaces would

come from the neighborhood of the zero-curvature points on the boundary [22] which

are associated with caustics of the GO reflected rays. In addition, the contribu-

tions from the complex stationary phase points in the PO integral are interpreted

as diffraction from the zero-curvature points rather than complex ray contributions.

This zero-curvature diffraction interpretation is indeed equivalent to the complex ray

interpretation, yet it eliminates the need for a complex extension of the scattering

boundary and the evaluation of geometric parameters in complex space.

The PO approximation is also employed in this chapter, thus, only the first order

scattering mechanisms will be considered, namely reflection, zero-curvature diffrac-

tion, and first order edge diffraction. The canonical function involved in the expression

74



for the total scattered field from a polynomial surface is the generalized incomplete

Airy integral [22]. In the special case of a cubic polynomial surface, this generalized

integral reduces to the usual incomplete Airy integral and the expressions for the scat-

tering mechanisms are in agreement with the results of Chapters 2 and 3 specialized

for the case of plane wave incidence with observation in the far-zone. In the case of

a fourth order polynomial surface, the generalized incomplete Airy integral reduces

to a special case of the incomplete Pearcy integral. It should be understood that the

results of the analysis employed in this chapter do not remain uniformly valid for

observation points in the intermediate or near zone of the scatterer. In the near zone

problem, the dominant contribution to the PO integral is no longer localized at the

zero-curvature points and a more general treatment along the lines of Chapters 2 and

3 must be employed.

The outline of this chapter is as follows: The geometric properties of polynomial

surfaces and their relation to the scattering mechanisms are discussed in Section 4.1.

The UGO/EUTD expressions for the reflected, zero-curvature and edge diffracted field

contributions from finite two and three dimensional polynomial surfaces are derived

in Sections 4.2 and 4.3, respectively.

4.1 Polynomial surfaces and high-frequency scat-

tering considerations

Let's consider a two dimensional polynomial surface. As a plane parametric curve it

may be expressed as follows:

_(u) = u_ + YCu)_, a <_ u < b. (4.1)

where Y(u) is an nth order polynomial function given by

Y(u) = P,(u) = ao + a,u + a_u" +... + a,,u" . (4.2)

The distinguishing feature of polynomial defined surfaces are the existence of zero-

curvature points which are real roots of the second derivative of the surface, that
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is

Y"(u,,,) = a2+a3u,,+a4u_+...+a,,u72=O; m=1,2..-,n-2, (4.3)

_,, = n(n- 1)a,. (4.4)

If a _ um _ b is a first order real root of (4.3), then the surface near um is locally

cubic, that is Y'"(u=) # 0 and Y(u) may be approximated as follows:

Y"'Cu")(u-u,,)" (4.5)
Y(u) _ Y(u,.) + Y'(u,,,)(u - u=) + 3[

In general, if Urn is an Ith order real root of (4.3) or an Ith order zero-curvature point

with 1 < I < n - 2, we have that

YC')(um) = O; 2_<k_<l+l (4.6)

Y('+2)(u,,) # O, (4.7)

and near urn, Y(u) may be approximated as follows:

YCu) .._ Y(u.) + Y'Cu=)(u - u,.) + Y(' + ')(u,.) (u - u.,) '+' (4.8)
(l + 2)!

It should also be noted that near an odd order zero-curvature point (l = 1, 3,5,-..)

the polynomial surface is concave-convex, whereas near an even order zero-curvature

point (l = 2, 4, 6,...) the polynomial surface is strictly concave or convex. The unit

tangent, normal, and surface curvature vectors for the polynomial boundary defined

in (4.1) are as follows:

t(u) - _'(u) _, + Y'(u)?_
h(u) - h(,) ' (4.9)

_,(u) = {'(u) x 3, (4.10)

= +",,(,,)h(,,)-
h'Cu) = -_(u) _,(u), (4.11)

= y"(u) (4.12)

h(u) = I_"(u)l = {1 + [Y'(u)]2} _/_ = Jacobirm. (4.13)

The results of Chapter 2 and specifically Equation (2.14) show that when both

the source and the observer are in the far-zone of the scattering surface, the zero-

curvature points are associated with caustics of the GO reflected rays. Figure 4.1
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Dark side S_

Caustic _ .... //

,/
Lit s'ic_"

Qe Qrl

4

Caustic

Figure 4.1: First order scattering mechanisms associated with a polynomial boundary

illuminated by a plane wave.

illustrates a polynomial boundary illuminated by a plane wave. The boundary C

contains an edge point, Q_, and two zero-curvature points, Qpt,p_, with their associated

GO ray caustics. When the two zero-curvature points are sufficiently far apart, the

high-frequency scattering from C can be effectively analyzed by treating each caustic

separately.

The scattering mechanisms of interest in the analysis that follows are reflection

that remains uniform as the reflection point Qr --* Qp, first order edge diffraction

that remains uniform as Q_ _ Qp, and zero-curvature diffraction or complex ray

(evanescent) field contribution that compensates the discontinuity of the reflected

field across the GO ray caustics. Although additional higher order mechanisms such

as edge exited surface rays and whispering gallery modes may also exist and con-
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tribute significantly to the scattered field in certain regions of the coordinate space

surrounding a polynomial surface, they will not be considered in the present analysis.

4.2 Uniform asymptotic analysis (2-D case)

The canonical geometries for the uniform asymptotic analysis are shown in Figure 4.2.

Figure 4.2a shows a semi-infinite perfectly conducting concave-convex polynomial

surface that contains an odd order zero-curvature point. Figure 4.2b shows a semi-

infinite perfectly conducting polynomial surface that contains an even order zero-

curvature point. The electric field J_" scattered by the 2-D polynomial boundary C

illuminated by a plane wave and observed at a point P in the far-zone of the boundary

can then be expressed in terms of the usual radiation integral over the electric current

J on C as follows:

E"(P)'_" --4-kZ°fc [$ x _" x J(O')] H(o2)(kR)d.t ' , (4.14)

where

¢(Q')

R = _-PI _" p - _'(Q')" _'' (far-zone approximation) (4.15)

= cose + sin0, (4.16)

= z_'+YCz),_=_'(:r); a_<z<oo, (4.17)

Y(z) is a polynomial function, p = O-P[, and _ is the observation direction. As

before, the PO approximation to (4.14) is employed using the GO currents in (2.2),

where the incident magnetic field at Q' under the plane wave illumination assumption

._'(Q') = Zo'($ixl6) e-J"(Q')7'; "i'._=o, (4.18)

= zo 1 $;x ]_'(Q'), (4.19)

_,(Q,) ^ . ^.,= p e -'k_'(q')°' (4.20)

is given by

is the polarization vector of the incident plane wave, and $i is the direction of

incidence given by

_i = _£, cos 0' - ._ sin 0'. (4.21)
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Figure 4.2: Canonical geometries for the uniform asymptotic analysis: (a) polynomial

boundary containing an odd order zero-curvature point, (b) polynomial boundary

containing an even order zero-curvature point.
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Thus, using the PO approximation and the large argument form of the Hankel func-

tion given in (2.6) the far-zone scattered electric field is given by

E (0,0, p) _ --_--, (4.22)

where R _ p was used in the magnitude term of (2.6). The vector quantity g(0', 0) is

the angular field dependence and is given by the following stationary phase integral:

oo

g(8',0) = / F(Z')e _h_t') dg', (4.23)
ta

where

¢(t') = ¢(l'). (_- _'), (4.25)

and _.(t') is the outward unit normal to the surface at Q'. The next step in the

procedure is the uniform asymptotic evaluation of _'(0', 0) using a generalized form

of Chester's expansion [22].

4.2.1 Uniform asymptotic evaluation of _'(0',0)

First, the stationary phase integral in (4.23) must be transformed into a canonical

form. This is done by using the surface approximation near the zero-curvature point

given in (4.8), or alternatively by expanding the phase function in Taylor series around

the zero-curvature point. Both methods give the same result, and if l is the order of

the zero-curvature point, that is zp is an lth order root of the equation _"(z) = 0,

the appropriate transformation is as follows:

8 v

¢(t') = _(s) = _ + _s + -, (4.26)
V

where v = l + 2,

= _(o)= ¢(t,),

=

(4.27)

(4.28)
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and tp is the unit tangent vector at Qp Hence, using (4.26) the stationary phase

integral in (4.23) transforms to the following canonical form:

_'(o',o)= _'o ]" _'(_)e_C_'+'_/_)d_, (4.20)
8a

where

_t

= / +1 ifQp_C
_a

t -1 if Qp e C,

d8 d, a8 tin(,, _)j

i_.,(_)1_ ,

"oo" = oc exp -jarg _, d8 ] J

..A__
II--I

, (4.30)

(4.31)

(4.32)

(4.33)

(4.34)

, (4.35)

and t'. is the unit tangent vector at Q.. The proper branches for/3, 8o and cll'/d8

depend on the sign of rn(z_, v).

Next, we employ a generalized form of Chester's expansion [22] for the amplitude

function in (4.29), that is

_(8) = _ [_m,0(8v-,+ _)m+ _ 8(8_-, + _)_
m_0

+ ...+_,v_,8_-,(8 _-, +/_)_], (4.36)

and since only the leading terms in the asymptotic expansion of (4.29) will be re-

tained, (4.36) may be written as follows:

v-2

G(8) - _ s"K0.. -t- (s _-_ ÷ fl) _(s), (4.37)
n_0

where

mq_l

+ ...+_,v_,,_-'(8 _-' +_)m-_]. (4.38)
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Dueto the symmetryintroduced by the plane wave far-zone observation assumption,

only the vector coefficient g0,0 is non-zero in (4.37), that is

g0,0 - 1 v-,v- 1 _ G_("s')' and (4.39)
k---.1

go.. = 0; n = 1,...,v- 2, (4.40)

whereG(sk)isgivenby

_(_) _'1 (4.411= _(tk)_.:.,

_sdl'].=., = [(v-1)(-fl)_-2*eJ2(*-l)("-21"/("-')]½_ , (4.42)

and sh are the stationary phase points of r(s), that is r'(s,) = O, and are given by

s, : (_fl)_-kr__ eJ2(*-l)-/(_-,) ; k = 1,2,..-,v - 1. (4.43)

Thus, using (4.37) along with integration by parts _'(0', 0) may be written as follows:

[y ]_(0',0) __P° go,o e_'_'*'_) d. - _(.o)P c_'o÷'"_/_+ 0(_-2), (4.44)
J_

and using (4.26) and (4.37) we have that

iiool,

_'(0', 0) __ eJ*°g0,0f e_'+'v/") as
aa

r  o_,o o(,°)
+ p,c.o_L/k(/_+":-') ik,'(..)

We then let s = tk-t/",7 = fl k('-°/', and (. = s.k'/"in (4.451,thus

÷O(k-7). (4.45)

eJk° /g(O', 0) __ _ go,o e_(''+'"/") dt
¢a

LJk'/_(7 + (:-') jk-'-_(8,,)J + O(k-'). (4.46 /

Finally, depending on the sign of m(z,,v) the angular field dependence g(O', O) is

given by

e jk° -_ --

-_o s'4_, C.,_,)+ e',--)
jg(to) _o ]
k¢,(to----_+ jv_(_ + C:-')J (4.47)
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if rn(zp, v) > 0,

e jka._ _, [ ( ) _'o ]

¢(0',0) ~ -_oK.(-y,¢.,,,) + e_"_'°),j_.to. ] (4.4S)

if m(.p,V) < O,

where the O(k -2) terms were omitted, and the parameters 7, ca, and go are given by

the following expressions:

-_ = ,,,k,_-,,-_'p.(_-v)_(_,_,), (4.49)

up = sgn[m(zp, v)], (4.50)

= ,

'_(*'_) = ff--m(.,_)l)!_ , (4.52)
v--2

(_../)2-¢r:_ _-, _. i_,,_ 1 (4.53)_o- _--i ZFCt")._.I i)l

The function K_(7,_, v) is the generalized incomplete Airy integral [22] defined as

follows:

-_w('y,¢,,_)_ f ec''+'_/_)d,; _ = 3,4,5,... (4.54)
¢

The second term in both (4.47) and (4.48) is a purely edge diffraction contribu-

tion where the first term in (4.47) and (4.48) involving the generalized incomplete

Airy integral contains all three scattering mechanisms, namely reflection, edge, and

zero-curvature diffraction. These scattering contributions may be separated using the

properties and complex plane topology of K_(7, _, v) in Appendix C. Also, the pa-

rameters a, 7, _o, and _0 can be expressed in terms of the local geometric parameters

on the boundary relevant to each scattering mechanism.

4.2.2 Reflected field contribution

There exist two cases. The first case corresponds to a concave-convex polynomial

boundary that contains sn odd order zero-curvature point. In this case v is odd

in (4.54) and the reflected field consists of two specular contributions that only exist

in the lit side of the caustic. The second case corresponds to a strictly concave or
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Figure 4.3: Reflection near an odd order zero-curvature point.

convex boundary that contains an even order zero-curvature point. In this case u is

even in (4.54) and the reflected field consists of a single specular contribution that

exists on both sides of the caustic. The concave-convex case will be considered first.

A. Reflection from a concave-convez polynomial boundary

The geometry for the reflected field from a polynomial boundary that contains an

odd order zero-curvature point is shown in Figure 4.3. Using (4.22), (4.47), (4.48),

and the appropriate expression for K_(_/, _, v) for u odd and 3' < 0 in Appendix C,

the reflected field in the lit side of the caustic is given by

• . e-J kp

E'(O',O;p) .-_ {ule'h°_L(--%,u)+u2e'h°'g2l:(--%,v)}_ (4.55)

if m(zp, u) < O,

• . e-J kp

Er(O',O;p) ... {u,e_°'_l:(-7,,u)+u,e'_°'_,I.(-7_,u)} _ (4.56)

if m(z.,u) > O,
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where '_1,2 : 1 if QI,2 E C and zero otherwise, and the function L(7, v) is defined as

follows:

I,(7,v) A___f....pO,/2_) ej(,,+,_/_ ) dz ; v is odd. (4.57)
,Ioo exp(-ja,_/2_)

The sign of m(zp, v) designates which side of the boundary C is illuminated. For

the situation depicted in Figure 4.3 ra(zp, u) < 0. From (4.24)-(4.26) and (4.53) the

parameters al,2, 7_,2, and _,2 may be written as follows:

ax,, = r'(Qm). ($" -- s') + up k-_ "}'_,2-', (4.58)

V--1

7,, = k _ I[¢(0_,) - ¢(0_)1 (_- _')1 , (4.59)

where/_ (Qt,,)is the GO dyadic reflection coefficient given in (2.60) and (2.61), and

p_(QI._), 0_,_ are the surface radius of curvature and angle of incidence at Q,._, respec-

tively. Thus, using (4.58)-(4.60) the reflected field from a concave-convex polynomial

boundary for the case of m(z.v) < O, that is p_(Q_) < 0 and p,(Q_) > O, may be

written as follows:

""°r I .

E(O,O,p)
,.., [u, g'(Q,). "R'(Q_)i_p,(Q_)cosO_ e_k"(Q_)+"

+ u,g'(O,).'R(O,)ilp,(O_)cosO_,eJ'"('_)'" ] --

e-JkP

(4.61)
v_'

where g+(Q_,2) is the incident plane wave at Q,., given in (4.20), and _ (Q_._) is the

UGO dyadic reflection coefficient and is given by

_ (Q,,,)

Ue+(Q,_)

Ra,h

^,^r (4.62)= n.(Q,,)i.i_ +n,(Q1,)e..e,,,

= Ro,h e j_ v -- 1 7:2.-r-_ e_j( ,. , ,,, i_.(_7,,,,v) ' (4.63)

= T1, for a perfectly conducting boundary. (4.64)

Equation (4.61) shows that the complex conjugate version of the UGO reflection

coefficient should be used when p,(Q,.2) < 0. When u = 3, (4.63) reduces to the

UGO reflection coefficients derived in Chapter 2 and given in (2.171).
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Figure 4.4: Reflection near an even order zero-curvature point.

B. Reflection from strictly concave or convez polynomial boundary

The geometry for the reflected field from a polynomial boundary that contains an

even order zero-curvature point is shown in Figure 4.4. Using (4.22), (4.47), (4.48),

and the appropriate expression for K_(7, _, v) for v even in Appendix C, the reflected

field on either side of the caustic is given by

ff,'Ca',e;p) ~ u,@ °" E,l,'(-7,,v)--
e-Jk°

; if m(=,,v) < O, (4.65)
v_

e-JkP
-'" ' • J'°" -- (4.66)

E (e,e,p) ,., u,e _',I,(-7,,v) vf fi ; if m(z,,v) > 0,

where u, = 1 if Q, E C and zero otherwise, L(7,v) is the same as in (4.57) with v

even, and the parameters a,, %, and _', are given by

a, = _'(Q,).('_'- $_)+u_k-t (_)7? 5r- , (4.67)

V--I

%= ,
86



Thus, using (4.67)-(4.69) the reflected field from a strictly concave or convex polyno-

mial boundary for the case of m(z_, v) < 0 or po(Q,) > 0 depicted in Figure 4.4 may

be written as follows:

E'(e',0;p) ~ u.E,'(Q.). "R (Q.)i_p_(Q.)cos8'

e-Jkp

ejk'(_')''" (4.70)
v_'

where g'(Q,)is the incident plane wave at Q, given in (4.20) and 7_ (Q,) is the UGO

dyadic reflection coefficient and is the same as in (4.62)-(4.64) with v even. Again,

when p_(Q,) < 0 the complex conjugate version of _ (Q,) should be used.

4.2.3 Zero-curvature diffracted field contribution

As in the case of the reflected field, we also have two cases for the zero-curvature

diffracted field. The first case involves diffraction from a an odd order zero-curvature

point associated with with a concave-convex polynomial boundary. Since the reflected

field is discontinuous across the caustic in this case, the zero curvature diffracted field

has to compensate this discontinuity. The second case involves diffraction from an

even order zero-curvature point associated with a strictly concave or convex polyno-

mial boundary. In the latter case the reflected field is continuous across the caustic,

thus the zero-curvature diffracted field only accounts for higher order surface discon-

tinuities.

A. Diffraction from an odd order zero-curvature point

The geometry for the diffracted field from an odd order zero-curvature point is

shown in Figure 4.5. Using (4.22), (4.47), (4.48), and the appropriate expression

for K_(7,(,v) for v odd and ( < 0 in Appendix C, the odd order zero-curvature

diffracted field is given by

g'(0',0;p) ~ UoeJh°,g_Ipt(-%,v)_,e-i'P (lit side) (4.71)
v_

• e-_P (darkside) (4.72)
g'(0',0;p) ~ _0e"°'_,Ip_(7,,_)-_ -,
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Figure 4.5: Diffraction from an odd order zero-curvature point.
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where u0 = I ifQ, E C and zero otherwise,and the functions Ipe(7,v), Ipa(7,v) are

defined as follows:

L,(7, v) _ [oo.=p(-_s./_.) eJ("+'"/V)dz; visodd, (4.73)
d oo exp[j( -_r+S_12v)]

lpd(7,V) _= f_'=P(J'/_v) d (''+'_/v) dz ; V is odd. (4.74)
oo exp[j( .-.12v)]

From (4.24), (4.25), (4.27), (4.28), and (4.53) along with some algebraic manipula-

tions, the parameters ap, %, and _'p are given by

_, = e(Q,). (9, - _'), (4.75)

7, = k("-""lcos_'.+cos_.t,_(Q.,v),
• _" -- V--2

(4.76)

(4.77)

where

_(Qp, v) = _(Q,,,v)(V-1)! _ , (4.78)

_(Q,,v) -- _a(.,-2)(Q,)_..(_-_ _-,) , and (4.70)

(-)L ' v) = _(Q,,, v) cos 2 ",(_,,_,; _', v, (4.80)

The angles _'p and _, are defined in Figure 4.5,_;(_-2)(Qp)is the v - 2th derivative

of the surface curvature at Qp, and _p is the outward unit normal at Q,. Thus, us-

ing (4.75)-(4.77) the zero-curvature diffracted field from a concave-convex polynomial

boundary may be written as follows:

_.(e',e;p) _ uoE'CQ.). _'°(Q.)e#"(Q')e e-#_" (4.81)

where E'(Q,) is the incident plane wave at Q, given in (4.20), and _*°(Q,) is the

EUTD dyadic odd order zero-curvature diffraction coefficient given by

._oo(Qp)= 7)_°'.Bo,'_%;v)_._ + Vh_°(_,,_,,, .u)^'^',e,,e, (4.82)

V°°" ' v) eJ_tk_2 I I,,,(-%,v), (lit side)
.._t_,,_,; = T _ L,(_',,_,;,.,)[ (4.83)],><_(7,,,v)• (dark side)

Notice that when v = 3, Ipt(-%,3) = 0 and the EUTD expression for the zero-

curvature diffracted field is equivalent to the complex ray field solution derived in
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Figure 4.6: Diffraction from an even order zero-curvature point.

Chapter 2 specialized for the case of plane wave incidence with the observer in the

far-zone.

B. Diffraction from an even order zero-curvature point

The geometry for the diffracted field from an even order zero-curvature point is shown

in Figure 4.6. Using Equations (4.22), (4.47), (4.48), and the appropriate expression

for K-w(7, ¢, u) for v even and ¢ < 0 in Appendix C, the even order zero-curvature

diffracted field on either side of the caustic is given by

e-JhP
* V

ff, P(O',O;p) ~ Uoe'k_Pg, 3;(%, ) x/_ ; ifm(x,,v)<0, (4.84)

g'(o',o;o) ~ ----_ ; if m(zp, v) > 0. (4.85)
x/P

Again, the sign of m(z_, v) depends on which side of the polynomial boundary is

illuminated, with m(z_, v) < 0 corresponding to the situation depicted in Figure 4.6.
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The parameters u0, ap, %, and _'p are the same as in the odd order zero-curvature

diffraction case. The function J_(7, v) is defined as follows:

L_ fooexp(j_r/2v) e j(_z+z"/u) dz ; v is even. (4.86)J_(7, u)
J_o_ exp[j(_-s,,/_v)]

Thus, using (4.75)-(4.77) the even order zero-curvature diffracted field may be written

as follows:
e-Jkp

(4.87)

where F_,'(Qp) is the incident plane wave at Qp given in (4.20), and _c_(Qp) is the

EUTD dyadic even order zero-curvature diffraction coefficient given by

= _°°" ' v) ^_^_z3°°(Q_) v °'" ' v)_ +• (_Op, _Op; h {,_Op, _Op; e iie II

eJ_k_ J;(%,v) ifmCz,,v) < O,

(4.88)

,.{7:)°_' ' t,) L,(_,, _,, u) (4.89)
,.,(_%,_; = T V/_ Jp(%,u) if rn(z_,u) > O.

4.2.4 Edge diffracted field contribution

The geometry for the edge diffracted field from a polynomial boundary is shown in

Figures 4.7a and 4.7b. Unlike the reflected and zero-curvature diffracted fields, the

two methods of analysis employed in Chapter 2, namely Chester's expansion and the

method of steepest descent, result in two different expressions for the edge diffracted

field. However, the resulting diffraction coefficients make use of the same transition

function and are in agreement to the first order term for observation points near the

RSB. They also reduce to the exact expression for the half-plane diffraction coefficient

outside the transition regions. When u = 3, the general transition function reduces

to the EUTD transition function derived in Chapter 2. The results obtained using

Chester's expansion method will be considered first.

A. Chester's ezpansion formulation for the edge diffracted field

Using (4.22), (4.47), (4.48), and the appropriate expression for K_(7,_,t,) in Ap-

pendix C, the edge diffracted field may be written as follows:

O;p) ~
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Figure 4.7: Diffraction from an edge in a polynomial boundary: (a) concave-convex

case, (b) strictly concave or convex case.
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+ e_,o_[j_(lo) _o I_ -_
[kC,(to)+ J(7+(: -_)jJ v_ ; ifrn(x_,v) > o, (4.90)

#_(O'.o;p) ~ {e_'oo_'o/:(%,(o,_)

+ e.,.o, [j_(,o) _o ] } e-_'_LkC,(t.) j(7+(:__ ) v/._ ; ifm(zp, y)<0. (4.91)

From (4.24)-(4.26) and (4.49)-(4.53) along with some algebraic manipulations, the

parameters ao, %, (_, and/'o are given by

a,, = F(Q,,) . (_d _ _,) _ upk-' (%(. + ('jr) , (4.92)

7o = u_k("-')/" (cos_'p + cos_pp)w(zp, u), (4.93)

(o = u,,k _/" (cos_p: + cos_o)w(a,u) - (cos_' + cos_p)w(zp, u) _ , (4.94)

ff(lo) (4.95)

where up and w(z,u) are given in (4.50) and (4.52), respectively, and

_o.) . (4.96)

The function Io('-/, (, v) is defined as follows:

L(7,(,v) z_ r[®..pIS_o(,')lej¢.,,+,,/,,)dz ; ( > O, (4.97)

(,v) / -1:(7' -() if v is odd /I.(7, = if ( < 0, (4.98)

t -1.(-7,-() if u is even, J

Tr/2u if [sgn(()]"-' (7 + (_-') > 0Co(V) = -37r/2v otherwise.
(4.99)

Also, from (4.24) and (4.25) we have that

¢(g,) = J_ [io" (-sin _'o $_± +

¢'(to) = cos_" + cos_..

sin _o. _11_;)] , (4.100)

(4.101)

Thus, using (4.92), (4.95), (4.96), (4.97)-(4.101) and the PO correction factors

in (2.117) and (2.118), the edge diffracted field may be written as foUows:

g_(O',O;p) ,.. E'(Qo). "D:(Q,,)e jk_'c'_'_'d e-Jk"
V_ ' (4.102)
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_,(Q°) v"(v°.v°)_ + . tv°.v°)e;,e_

• -

7. if v is odd% = sgn(_a)% if v is even,

Cd--ICol.

(4.103)

(4.104)

(4.105)

(4.108)

The EUTD transition function _'(7, C,v) is defined as follows:

.F(-r,C,,,)_ j('r+ ¢_-_)1;(.r,C,,.,)e_(',,+,_/_), (4.107)

and when v = 3, it reduces to the expression derived in Chapter 2 and given

in (2.185). It is also understood that when p,(Qo) < 0, the complex conjugate version

of _-(3',(, v) should be used in (4.104).

When the observation direction is near an optical boundary and far removed from

the caustic, that is % + _-1 _ 0 with % << -1,/.(7, _, v) can be expressed in terms

of the Fresnel integral and the transition function _r(7 , _, v) reduces to the UTD

transition function F(z) as was shown in Chapter 2 for the v = 3 case. Therefore,

near the optical boundaries and away from composite shadow boundaries the EUTD

diffraction coefficient in (4.104) is in agreement with the regular UTD diffraction

coefficient. In addition, away from transition regions, that is % + _-1 >> 1, it can

be easily shown by employing integration by parts in (4.97) that -_'(7, _, v) --, 1

and (4.104) reduces to the exact expression for the half-plane diffraction coefficient.

B. Steepest descent formulation for the edge diffracted .field

For the steepest descent analysis we begin with the expression for the scattered field

in (4.22)and (4.23),thatis

g'(e', e;p)_ e_'__(B, s., v;k)--
e-jkp

x/'fi ' (4.108)

where a, r, and s. are given in (4.27), (4.28), and (4.30), respectively, and ra(zp, v)

given in (4.34)is taken as positive in the analysis that follows. _(fl, 8o, v;k)is a
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stationary phaseintegral in the complex s-plane and is given by

E(z,8., v;k)= f0(8)e;" _'÷'_'v'd,. (4.109)

$Q

_(f_, so, v; k) has the same complex plane topology as the generalized incomplete Airy

integral in Appendix C. Thus, by deforming the original path of integration in (4.109)

into the appropriate steepest descent paths through the integration endpoint as shown

in Figures C.1-C.3, the edge diffracted field contribution in (4.108) may be written

as follows:

where

E_(O',O;p)_ ejk_L(_,so, v;k) --e-ikP, (4.110)
v_

L(_, 8o,_;k) =/,_,,x,,c._,d(,.,)ld(8) e_k(_'+'_)as, (4.111)

{ 7r/2v if B+ s: -1 > 0 /
; for sa > 0, (4.112)

_b_(v) = -3_r/2v otherwise

{ _r-Tr/2v iffl+8_-'>O }
= ; for 8o < 0 and v odd, (4.113)

-lr + 37r/2v otherwise

= ; for s. < 0 and v even. (4.114)
7r - 3_r /2v otherwise

Next, it is assumed that G(s) is regular and slowly varying along the path of integra-

tion in (4.111) and thus, for large k the principal contribution to the integral would

come from the neighborhood of the integration endpoint. Upon expanding G(s) in

Taylor series around so and making the substitution s = tk -'/_, the edge diffracted

field may be written as follows:

e_Oo_(t°)
_(e',0;p) ~ _) (% + _:-') Io(_°,_°,_)e-_'_____v_

if m(z_,v) > O,

• ,_(t°)
E';ce', s; p) ~ -e"°°k--7_.) ('to + ¢:-') I:(%,(o,v) e-_"v_

if m(z_,v) < 0,

(4.115)

(4.116)
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where a_, %, _ are the same as in (4.92)-(4.94) and l,(%¢,v) is defined in (4.97)-

(4.99). Finally, using (4.100), (4.101) and the PO correction factors in (2.117)

and (2.118) the steepest descent formulation for the edge diffracted field for the case

of pg(Q.) > 0 is given by

e-J*P (4.117)
_:(0',0;p) ~ _'(Q,). _;(Q°)e _'(_°)'_ _,

7_;(Q.) V ,2' ' W 2' ' "^'^d (4.118)= . (_, _o) e-e± + h (_.,cPo) e,e,,

.._t_,°,_,o)- 2,/_ cos(_-):F cos(_) _'(_,¢_,_1, (4.119)

where"re,¢_,and_'(%_,,,) are the sameasin (4.105)-(4.107).WhenO,(O°)< 0 the

complex conjugate of ._'(%(,v) should be used in (4.119).

The major difference between the steepest descent diffraction coefficient in (4.119)

and the diffraction coefficient in (4.104) derived using Chester's expansion method is

that in (4.119) the transition function operates on the entire non-uniform coefficient

as opposed to the Chester expansion formulation in (4.104) where the transition

function operates only on the reflection term of the non-uniform coefficient. Thus,

near the RSB and away from the caustic, (4.119) would be in agreement with the

UTD diffraction coefficient only to the first order term. Away from transition regions,

however, it reduces to the exact expression for the half-plane diffraction coefficient as

well.

4.3 Uniform asymptotic analysis (3-D case)

The surfaces considered for the 3-D analysis are assumed to be rotationally symmetric

or slowly varying in the transverse direction, with the 2-D polynomial boundaries of

Figure 4.2 in the previous section being the generator curves representing one of

the principal coordinate curves of the 3-D surface. The general procedure employed

in this section is very similar to the one employed in Chapter 3 for the near-zone

problem. Hence, some of the details will be omitted.

As usual, the electric field/_' scattered from a 3-D polynomial surface containing

an edge illuminated by a plane wave and observed at a point P in the far-zone of the
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surface is expressed in terms of the radiation integral over the electric current f on

S, that is

where

ff e-jkR_'(e)_ jkZo4__7_[_×_ × f(O')] --g-e,', (4.120)
S

R = _ ,_ ro- _*(Q'). _', (far-zone approximation) (4.121)

= $ sin 00 cos _Oo+ _ sin 00 sin _Oo+ _ cos 0o, (4.122)

_" = - £ sin 0'ocos V'o - Y sin 0'o sin 9'o - F cos 0'o, (4.123)

Q' is any point on S, ro = O-P is the distance between the origin of the reference

coordinate system and the observation point, _(Q') = OQ, is the surface vector,

and _'_, _ are the directions of incidence and observation, respectively. The PO

approximation to (4.120) is employed once again using the GO currents in (2.2) with

the incident magnetic field under the plane wave assumption given in (4.18). Thus,

the far-zone scattered electric field may be written as follows:

e-Jkro

/_'(0'o,9'o, eo,_Oo;ro) _ g(O:,_p'o, Oo, cPo)--, (4.124)
ro

where R _ ro was used for the magnitude term in (4.120). The vector quantity

g(O'o, _'0, 0o, _Oo)is the angular field dependence and is given by the following stationary

phase integral:

where

Ca -oo

(4.125)

jk {_x "_x [fi(l',r') x _"x 1_]}, (4.126)f(l',_') - 2_

¢(l',r') = ¢(t',r').(_- _'), (4.127)

_(l', r') is the outward unit normal to the surface at Q', and l', r' are the principal

coordinate curves of the 3-D polynomial surface S. The edge is located at (l,, r') and

therefore extends along the principal coordinate curve r' which is assumed to have a

slowly varying curvature. The next step in the procedure is the uniform asymptotic

g'O' ' 0 "evaluation of t o, _o, o, _o).
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4.3.1 Uniform asymptotic evaluation of 00,

First, it is assumed that the 3-D polynomial surface contains an isolated zero-

curvature line that satisfies the following relation:

' ' = o, (4.128)

and is arbitrarily close to the edge. Also, the phase function in (4.127) contains at

least one real and a number of complex stationary phase points that are situated near

the zero curvature line and satisfy the stationary phase condition given in (3.8). The

corresponding zero-curvature diffraction point is a stationary point along the zero-

curvature line, it has coordinates Qp = (lp,%) and it can be arbitrarily close to the

edge diffraction point with coordinates Qo = (l_,%). The zero-curvature diffraction

point satisfies the following phase condition:

ett(l',r') = r_t(lp,%) = 0 and ¢_(l',r') = _p.(_'-_") = 0, (4.129)

where _p is the unit tangent along the zero-curvature line at Qp. The second condition

in (4.129) is analogous to the law of edge diffraction, and both conditions in (4.129)

must be satisfied simultaneously at the zero curvature point. If I is the order of the

zero curvature point, that is Qp = (lp,r,) is an/th order root of r_t(l',7".) = 0, we

have that

0-_;,F(l', =0; 2<n<l÷l, (4.130)
(G,_,)

and ¢(t', v') contains l ÷ 1 stationary phase points. When I is even, the surface near

the zero-curvature point along the l' principal coordinate is strictly concave or convex,

and one of the stationary phase points is real and corresponds to a single specular

reflection point. When I is odd, the surface near the zero-curvature point along the

l' principal coordinate is concave-convex, and two of the stationary phase points are

real and correspond to a pair of specular reflection points for observation directions

in the lit side of the caustic. In the dark side of the caustic all stationary phase points

are complex.

The 3-D analysis can be effectively reduced to a 2-D situation using the same

procedure employed in Chapter 3, that is a local quadratic approximation is initially
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used for the phase function and the integral along the r' principal coordinate is

-"0' ' 0 "evaluated using the stationary phase method. Thus, e t o, _°, o, _o) is given by the

foUowing expression:

_'(O'o,_'o,Oo,_o),_ o(t,r.)e"_l","_a',
la

(4.131)

where

._fj__ x _x [_(t',_.) x _ x _]_(e, 1",) , (4.132)V2_
"2 J¢.(t ,_.)

¢(l',v,) = ¢(l',r,) 2$,,(t',ro)' (4.133)

_¢(l',r,) and (4.134)
_'= _' 2,_,.,.(t,,-.)'

" ' (4.13s)¢,,(l,r.) # o v t'.

The asymptotic reduction of the integral in (4.131) would follow the same steps as the

asymptotic reduction of the integral in (4.23). Therefore, the following transformation

is introduced in (4.131):

v

¢(l',r,) = _(t)= a + Bt + --, (4.136)
V

where v = 1 + 2, and

a = ¢(lv,r,) = 6"(Qv). (_- .gi) (4.137)

,8 = l',. (_- _';) d/i ,=o ' (4.138)

and l'p is the principal unit tangent at Qv along the t' surface coordinate. Hence,

using (4.136) the field angular dependance is given by

"oo"

f __ .
_'(0:,_',0o,_o)_ e"" g(Oe''''+' _"_dr,

fa

(4.130)

where

(4.140)
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+1 ifQ,,_S
u° -- (4.141)

-1 if Q_ E S,

d2'

gCt) = G(t',r.) _-, (4.142)

a' ,._
dt - d,, dt Lm(v,_)J ' (4.143)

m(v,_) = *'(_)("_)"(_- _'')i_.,(v)l_ , (4.144)

and _v) is the parametric generator polynomial boundary of the 3-D surface,

or a parametric representation of the l' principal coordinate curve. The proper

branches for f_, to and dl'/dt depend on the sign of m(%, `') and as usual "oo" =

oo exp(-jarg(dl'/dt). The asymptotic evaluation of (4.139) is then carried out by

employing the generalized Chester expansion [22], and in exactly the same manner

as was done for the 2-D case in the previous section. Without any further details,

the field angular dependence is given by the following expression:

eJka

~ ....,

+ jv,_(3'+¢°)v_, ; if m(%, `') > O, (4.145)

eika

[keg°,,-.)
go

- jV_(3' + ¢)_-' ; if re(v,,,`') < 0, (4.146)

where K_(3", (, `') is the generalized incomplete Airy integral [22] denned in (4.54).

The parameters 3', _o, and e0 are given by the following expressions:

3" = upk("-_)/"t'_, • (2- h"i) w(%,`'), (4.147)

up = sgn[m(%,`')], (4.148)

_. = uok,/,,l_ . (__ 2i) wCvo,`')_ _p. (__ _i) wCvp,`') _- , (4.149)

(,,-1)! _
w(v,`') = _(_:_[ , (4.150)

v--2 v--I I

(_3'),-r=, _E_(t,,,-.) `'- 1_0 - (4.151)
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where (g_,%), k = 1,2,.-.,u- 1 are the stationary phase points of ¢(g',ro). Also,

using (4.127) and (4.132)-(4.134) we have the foUowing relationships:

¢(lo,T.) = ¢(l°,r.)=_(Qo).('i _-_'), (4.152)

6(e,,r.) = g(l,,_.)= -2_1(Q,) cosO',, (4.153)

_(lk,r.) = "---Ji_cos0:_, h (Q,) (4.154)
_/14;-(t_,_.)1 '

¢,,(lk,ro) = -2s,(Qk) cos0'., (4.155)

_(lo,r.)
- jk_. D.. (Q,)_/_,, (4.156)

R. sin 2 Zgo (4.157)
p: = _.. (_-_- _,)'

where/_,,,, (Qo)is non-uniform PO dyadic edge diffraction coefficient given in (3.68)

and (3.69), padis the distance between the caustic at Qo and the second caustic of the

edge diffracted ray, Ro > 0 is the edge radius of curvature, v_o is the usual angle of

diffraction, and _o is the unit edge normal.

Next, the scattering mechanisms in (4.145) and (4.146) are separated using the

properties and complex plane topology of K_(7, _, v) in Appendix C.

4.3.2 Reflected field contribution

There exist two cases for the reflection from a three dimensional polynomial surface

as well. For the first case we consider a polynomial surface that contains an odd order

zero-curvature line with u odd in (4.145) and (4.146). The reflected field consists of

two specular contributions in this case, that only exist on the lit side of the caustic.

For the second case we consider a polynomial surface that contains an even order

zero-curvature line with v even in (4.145) and (4.146). The reflected field in this case

consists of a single specular contribution that exists on both sides of the caustic.

A. Reflection near an odd order zero-curvature line

Using (4.124), (4.145), (4.146) and the appropriate expression for K_(7,_,u) with u

odd and 3' < 0 in Appendix C, the reflected field on the lit side of the caustic is given
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by

"" ' ' 6o,_o;r°)E (e°, _o,

E'[O' '°,_o, Oo,_Oo;ro)

~ {_, e k°'< I.(-7,,_)

+ _, eJk°'_,l:(-7,,v)} --

~ {_1ej_°'< I:(-%,_)

+ _ e_°' _.I.(-_,_)} -

e-Jkro

; ifm(%,v) < 0, (4.158 /
ro

e-jhro

; ifm(%,u) > 0, (4.159)
To

where ul.2 = 1 if Q,.2 E S and zero otherwise, the function L(7, v) is defined in (4.57),

a_.:, 7,,_ are the same as in (4.58) and (4.59), and _,, for the 3-D case is given by

.. f-uv-1 _ [_./_(Q:,,)] 1_ = e'WV2'--_ _.V-" _V/IR,(Q,,_)P_(Q_,_)I, (4.160)

where /_ (Q,._)is the GO dyadic reflection coefficient given in (3.54) and (3.55),

and R,._(Q,.,) are the principal surface radii of curvature at Q,.,. Thus, using (4.58)

and (4.160) the reflected field from a polynomial surface that contains an odd order

zero-curvature line for the case of R_(Q,) < 0, and Rt(Q,) > 0 may be written as

foUow S:

E (0.,_o, 8o,_o;ro)~ E,'(Q_). _'(Q,)_/R,(Q,)R_(Q,)e i*'¢'_'_'"

+ -2 f_,(Q:). ,_ (Q_)_/R,(Q,)R,(Q_)ej,,(,_) ,, e-"", (4.161)
ro

where ff,'(Q,,_) is the incident plane wave at Q,._ given in (4.20), 7_ (Q,._) is the UGO

dyadic reflection coefficient given by

(Q,,.) : _.(Q,,.) _'_i + _.(Q,,.)_I_z_, (4.162)

and 7_.,h(Q,._) are the same as in (4.63) and (4.64). It is also understood in (4.161)

that if R,(Q,._)I_(Q,._) < O, v/R,(Q,._)I_(Q,._) = jv/IR,(Q_,_)P_(Q,._)I.

B. Reflection near an even order zero-curvature line

Using (4.124), (4.145), (4.146) and the appropriate expression for K_(7,¢,u) with t,

even in Appendix C, the reflected field on either side of the caustic is given by

e-jkro

~ u. eJh"'_.l:(-%,t,)--; ifm(Q,)<0, (4.163)
7'o

e-jkr°

~ u, eJ'°'_,I,(--7,,v)--; ifm(Qp)>0, (4.164)
ro
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and _ for the 3-D case are given by

"y, = k(v-')/v,_CQ,,v)sinOplcos_' +cos_pl, (4.169)
._. --v--2

e_4 k-'_- L ' ^_ ^"
_'p _ p(_ap,_%,Op;v) [i_" (-_ + e,,e..)] X/_ (4.170)

sin _ v"_ '

where

= (.- 1)!
_-((_., _) , (4.171)

_(Qp, v) = -_;_v-')(Qv)_,. (_'- _'), (4.172)

_,,v) v) 0, cos ( t°;- _%) (4.173)
L

p(v,,v,,' = _(Q,, sin _ ,

, R, sin _ _, (4.174)
p, =

fi_ is the outward unit normal at Q_, 0_ is the angle between the tangent along the

zero-curvature line at Qp and the direction of incidence (analogous to the angle of

diffraction,) _'p, _p are the angles of incidence and observation, respectively, projected

on the plane perpendicular to the tangent along the zero-curvature line at Qp, p_ is

the distance between the caustic at Qp and the second caustic of the zero-curvature

diffracted ray, R_ > 0 is the radius of curvature of the zero-curvature line, and tip

is the unit normal of the zero-curvature line at Qp. Also, the v - 2th derivative of

the surface curvature in (4.172) is along the the l' principal coordinate line. Thus,

using (4.75), (4.169), and (4.170) the odd order zero-curvature diffracted field from a

polynomial surface may be written as follows:

JE"(O'o,_'o, eo,_Oo;ro) "_ uoE'(Qp). _)°°(Q,)v/_peJ"(_')'P e-_k'----_°, (4.175)

where/_'(Q,) is the incident plane wave at Qp given in (4.20), and _)°°(Q,) is the

EUTD dyadic odd order zero-curvature diffraction coefficient for oblique incidence

given by

co I . " _ "

T)°°(Q,) = V. (to,,_o,,Op, v)_'_ + _D_,°(to',_0,,O,; v) e;le;, (4.176)

"D°° " ' ei f k ef-_2 I.,,(_,,_p,O,;v) L,(_;,_,,O,,v) Ip,(-%,v), (lit side)

= q:sinO, x/_ ( l_(%,v). (dark side)

(4.177)
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wherea, = 1 if Q, c:: S and zero otherwise, L(7,v) is the same as in (4.57) with v

even, a,, 7, are the same as in (4.67) and (4.68) and g, for the 3-D case is given by

._ _-1 .-2
e', : e'tV:-_- ")'_ [P"/_ (O,)] _¢IR,(Q,)Ra(O,)I • (4.165)

Thus, using (4.67) and (4.165) the reflected field from a polynomial surface containing

an even order zero-curvature line for the case of RI(Q,) > 0 may be written as follows:

_" O' ' u,. -., _, (4.166)E (o,_Oo,0o,_o;ro) ,,_ --_ E (Q,). "R (Q,)¢R, CQ,)I_CQ,)e _'_'(Q')'" e-Jh'"r°

where/_'(Q,) is the incident plane wave at Q, given in (4.20) and _ (Q,) is the UGO

dyadic reflection coefficient and is the same as in (4.162), (4.63) and (4.64) with v

even. When R_ (Q,) < 0 the complex conjugate version of _ (Q,) should be used.

4.3.3 Zero-curvature diffracted field contribution

As in the case of the reflected field, we also have two cases for the zero-curvature

diffracted field. The first case involves diffraction from a zero-curvature point associ-

ated with an odd order zero-curvature line in a polynomial surface. The reflected field

is discontinuous across the caustic in this case, therefore the zero-curvature diffracted

field has to compensate this discontinuity. The second case involves diffraction from

a zero-curvature point associated with an even order zero-curvature llne in a poly-

nomial surface. In the latter case no discontinuities have to be compensated by the

zero-curvature diffracted field since the reflected field is continuous across the caustic.

A. Diffraction from an odd order zero-curvature point

Using (4.124), (4.145), (4.146), and the appropriate expression for K_(q,_,u) for v

odd and _ < 0 in Appendix C, the odd order zero-curvature diffracted field is given

by

e-Jkro

E'f0' .' 0o,_o;ro) -_ Uoe j"°" g, /p,(-%, v) _ (lit side) (4.167)k o, _o'
7' o

e-Jkro
gpI I]l It_o, tOo,0o,_Oo;ro) .-_ u0e_'°pgp/p,(%,u) -, (darkside) (4.168)

7'o

where u0 = 1 if Q, E S and zero otherwise, the functions I,,(7, z'), I,_(7, _') are defined

in (4.73) and (4.74), respectively, a_ is the same as in (4.75), and the parameters %
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Notice that when v : 3, lpt(-%,3) : 0 and the EUTD expression for the zero-

curvature diffracted field is equivalent to the complex ray field solution derived in

Chapter 3 specialized for the case of plane wave incidence with the observer in the

far-zone.

B. Diffraction from an even order zero-curvature point

Using (4.124), (4.145), (4.146), and the appropriate expression for K+(7,¢,v) for v

even and i < 0 in Appendix C, the even order zero-curvature diffracted field on either

side of the caustic is given by

e-Jkro

* l/Uoe'k_,_,J;(%, )--; if_(O,,v) <0, (4.178)
ro

e-Jkro

~ Uoe_+°p_,J,(%,_)--; if _(Q,, v) > 0. (4.179)
ro

The parameters u0, a_, %, and _'p are the same as in the odd order zero-curvature

diffraction case, and the function Jp(7, v) is defined in (4.86). Thus, using (4.75),

(4.169), and (4.170) the even order zero-curvature diffracted field may be written as

follows:

ro
(4.180)

where E,'(Q.) is the incident plane wave at Q. given in (4.20), and _"(Q.)is the

EUTD dyadic even order zero-curvature diffraction coefficient for oblique incidence

given by

z_O.(Q,) v oo,, o° , . ^.^ , (4.181)

g

t
j;C%,v), _(Q,,v) < o

j,(%,,,), _(Qp,_,)> 0.
(4.182)

4.3.4 Edge diffracted field contribution

As in the 2-D case of the previous section, the two methods of analysis employed in

Chapter 3, namely Chester's expansion and the method of steepest descent, result in
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two different expressions for the edge diffraction coefficient that are in agreement to

the first order term, however, for observation points near the RSB. They also reduce

to the exact expression for the half-plane diffraction coefficient for oblique incidence

outside the transition regions. Let's consider Chester's expansion method first.

A. Chester's expansion formulation for the edge diffracted field

Using (4.124), (4.145), (4.146), and the appropriate expression for K_(7,_,u ) for in

Appendix C, the edge diffracted field may be written as follows:

£_(e'o,_'o,Co,_o;to)

+

{¢_o._.o ¢,_(,....) jd(to,,-.)I.('7°, (o, u) +
k_(to,T.)

e° } e-Jh'°J(7 + _U') r----/-; if rn(vp, u) > 0,

I_'(%, _., u) +

_a ) e-Jh"°J (7 _:-') r--_; if m(%,u) < 0,

(4.183)

(4.184)

where ao is the same as in (4.92). From (4.147)-(4.151), along with some algebraic

manipulations, the parameters 7°, _o, and g. for the 3-D case are given by

I

7° = up k_-')/_ sin tgp(cos _% + cos_op)w(vp, u) , (4.185)

_o = uo k ' /_ sinOo(cos _o'o+ cos _o_)w( vo , u ) - sin_p(cos _o'p+ cos _op)w( vp, u ) _ ,

(4.186)

f(lo, %) (4.187)
+ c-')  17. ) ,

where up and w(v,u) are given in (4.148) and (4.150), respectively,

and the function I°(7,¢,u)is defined in (4.9?)-(4.00). Thus, using (4.152), (4.156),

(4.157), (4.92), (4.187), (4.188), and the PO correction factors in (2.117) and (2.118),

the edge diffracted field may be written as follows:

g_CO;,V'o,Oo,V.;,..) ~ E'(Q=)" _;(Qo)v/-_ e j'e(_°)'r' e-ik'-----_°, (4.189)
ro
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where73;(Qo) is the EUTD dyadic edgediffraction coefficientfor oblique incidence

derivedusingthe Chesterexpansionmethod and is given by

73:(Qo) = , . ,^d :D._, , _9.) ^,^d (4.190)

:D._ , , ,, -e-J_ [ 1 _'(%, Cd, v) ],,,(_a,_o.;_.) = 2sind--_ cos(_ -v-z) T cos('+2_) j ' (4.191)

%, _d are the same as in (4.105), (4.106), and _'(7,_,v) is defined in (4.107). It is

understood that when R_ (Q.) < 0, the complex conjugate version of.T'(% _, v) should

be used in (4.191).

B. Steepest descent formulation for the edge diffracted field

For the steepest descent analysis one begins with the expression for the scattered field

in (4.124) and (4.139), that is

e-jkro

, (4.192)

where a, /3, and to are given in (4.137), (4.138), and (4.140), respectively, and

_(_, t_, u; k) is a stationary phase integral in the complex t-plane given by

_(f_,to, v; k) = f _(t)e j_(''÷'"/", ds. (4.193)

_(_,t.,u; k) has the same complex plane topology as the stationary phase integral

in (4.109) for the 2-D case. Therefore, the edge diffracted field contribution in (4.192)

is identified in the same fashion as in the 2-D case, and without further details it

may be written as follows:

gg(o:,v', Oo,v.; _o)

_:(o:,¢,00,_o;_0)

• O(t.,_.)
~ e'°" k¢(t.,_.) (%+ C-1) Io(7.,¢o,_)e-'''---2_°
if m(v.,u) > O,

• Og., _.)
~ -e'h°" k(b(t.,r.) (7. + _:-') I:(7°,_., u) e-'k'----_°ro

if m(v_,u) < 0,

(4.194)

(4.195)

where c_. is given in (4.92), %, _. are the same as in (4.185) and (4.186), and I.(7, ¢, u )

is defined in (4.97)-(4.99). Finally, using (4.156) and the PO correction factors
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in (2.117) and (2.118), the steepest descent formulation for the edge diffracted field

for the case of R_ (Qa) > 0 is given by

_dr_, , a . = o),D/'__"=,,Vo,Vo,eO,V.;_°)~ _'(Q ) Z);(Q .,.. Ch'C_°)',de-'h'°
ro

--, (4.196)

where p_ is given in (4.157), and _;(Q.) is the EUTD dyadic edge diffraction coeffi-

cient for oblique incidence derived using the method of steepest descent and is given

by

• ,2 , ^,^d (4.197)_;(Qo) : v °2".tvo,'v°;_.) _ + v_ (vo,v.;_°) _,e,,

1 ]cos co_(_) z(_,_,_)
(4.198)

where7_,_,, and _:(7,¢,_')_rethe sameasin (4.105)-(4.10_).Whenn,(Qo) < 0 the

complex conjugate of .T'(7, C:,u ) should be used in (4.198).
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Chapter 5

Numerical Results and Discussion

In this chapter, numerical results for the scattered fields from cubic and fourth order

polynomial strips illuminated by a plane wave are presented and discussed. The ac-

curacy and limitations of the UGO/EUTD solution derived in this report are assessed

by comparison with an independent method of moments (MM) solution. Results ob-

tained using the classic GO/UTD solution are also shown to illustrate its failure near

caustics and composite shadow boundaries and the need for the new solution. The

total scattered field is plotted in terms of echo width which is defined as follows:

E''_L.(O,O')- _ 2_-p_ ]. (5.I)

Both monostatic and bistatic results for the plane wave scattering from cubic and

fourth order polynomial strips are presented and discussed in Sections 5.1 and 5.2,

respectively.

5.1 Scattering results for cubic polynomial strips

In this section, results for the plane wave scattering from cubic polynomial strips

are presented and discussed. The method denoted as UGO/EUTD1 in the results

that follow uses the edge diffraction coefficient in (4.104) derived using the Chester

expansion. The method denoted as UGO/EUTD2 uses the edge diffraction coefficient

in (4.119) derived using the method of steepest descent. The scattering geometry and

the relevant parameters are illustrated in in Figure 5.1. Before proceeding with the

results for the total scattered field, the various field mechanisms are examined and
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the EUTD1, EUTD2, and UTD edge diffraction coefficients are compared. The first

example considered is a cubic polynomfial strip with a0 = 2.0A, al = 0.5, a2 = 0.1A -_,

a3 = 0.1A -2, a = -1.5A, and b = 1.5A. In this case both edges are far removed from

the zero-curvature point, and thus the two RSBs and the caustic of the reflected rays

are clearly distinct. Figure 5.2 shows a plot of the magnitude of the various field

contributions to the total scattered field due to a TM polarized plane wave incident

at an angle 8' = -45 °, computed using the UGO/EUTD1 method. Notice that

the two reflected field components exhibit a combined total of three discontinuities.

The first discontinuity occurs across the caustic of the reflected rays (g _ -85 °)

and is compensated by the zero-curvature diffracted field that only exists in the

dark side of the caustic. The second discontinuity occurs at the RSB associated

with the edge at Qa (8 _ -52 °) and is compensated by the edge diffracted field
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and angle of incidence 8' = -45 °.

from Q_. Similarly the third discontinuityoccurs at the RSB associated with the

edge Qb (8 ._ -23 +) and iscompensated by the edge diffractedfieldfrom Qb. Also

notice that the two edge diffractionterms become singularnear the ISB (8 = 135°);

however, they combine to give a finiteresult. The second example considered is

semi-infinitecubic polynomial boundary with a0 = 2.0A, a, = 0.5, a2 = 0.1A-I,

as = 0.1A-2, a = -0.33A. In this case the edge at Q. coincides with the zero-

curvature point,and thus a composite shadow boundary isformed. Figure 5.3 shows

a plot of the magnitude of the edge diffracted field due to a TM polarized plane

wave incident at an angle 8' = -45 °, computed using the EUTD1, EUTD2, and

UTD diffraction coe_cients. Notice that UTD produces a singular result near the

composite shadow boundary. The EUTD1 and EUTD2 results are not in complete

agreement near the composite shadow boundary, however they both remain finite. All
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three diffraction coefficients seem to be in good agreement away from the composite

shadow boundary. The third example considered is semi-infinite parabolic boundary

which is a special case of a cubic polynomial boundary with a0 = 2.0A, al = 0.5,

a2 = 0.1A-', a_ = 0.0A -_, a = -0.33A. In this case no caustic or composite shadow

boundary exists and UTD is expected to give accurate results for the edge diffracted

field. Figure 5.4 shows a plot of the magnitude of the edge diffracted field due to

a TM polarized plane wave incident at an angle 0' = -45 ° computed using the

EUTD1, EUTD2, and UTD diffraction coefficients. AU three diffraction coefficients

are in good agreement, however, the EUTD1 diffraction coefficient seems to be in

better agreement with UTD near the RSB. Figure 5.5 shows the bistatic echo width

of a cubic polynomial strip with a0 = 2.0A, a, = 0.5, as = 0.1A-', a3 = 0.1A -_,

a = -0.33A, and b = 1.5A illuminated by a TM polarized plane wave incident at an
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Figure 5.5: Bistatic echo width (TM case) of a cubic polynomial strip with a0 = 2.0A,

a, = 0.5, a2 = 0.1A-', a3 = 0.1A -2, a = -0.33A, b = 1.5A, and angle of incidence

0' = -45 °.

angle 0' = -45*. The classic GO/UTD solution produces a singular result near the

composite shadow boundary whereas the UGO/EUTD1 and UGO/EUTD2 remain

finite. Notice that the UGO/EUTD1 solution is in better agreement with MM near

the composite shadow boundary whereas the UGO/EUTD2 solution seems to be more

accurate away from the composite shadow boundary. The differences, however, are

quite minor (< 1 dB-A) and therefore the two EUTD diffraction coefficients should

be considered equivalent for all practical purposes. For the subsequent results only

the UGO/EUTD1 results will be shown.

Figures 5.6 and 5.7 show plots of the bistatic echo width of a cubic polynomial

strip with a0 = 2.0A, a_ = 0.5, a2 = 0.1A -_, a3 = 0.1A -2, a = -1.5A, b = 1.5)% and

angle of incidence 8' = -45", for the TM and TE polarization cases, respectively.

The UGO/EUTD result shows excellent agreement with MM for the TM polarization
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case. For the TE polarization case, the higher order mechanisms which are not

included in the UGO/EUTD solution are quite significant and therefore the agreement

is reasonable only near the specular and forward directions where the first order

mechanisms are dominant. For observation directions near grazing the higher order

mechanisms such as edge excited creeping waves and whispering gallery modes excited

in the concave part of the cubic strip must be included to obtain accurate results for

the TE polarization case. The classic GO/UTD solution gives an erroneous result

near the caustic (O _ -85°), and on both its lit and dark sides. This is expected since

the classic UTD solution does not include zero-curvature diffraction information, and

the GO expression for the reflected field gives singular results near caustics. Away

from the caustic, the UGO/EUTD and GO/UTD results are in good agreement for

both polarizations. Figures 5.8 and 5.9 show plots of the monostatic echo width of

the same cubic polynomial strip for the TM and TE polarization cases, respectively.

The monostatic UGO/EUTD result shows excellent agreement with MM for the

TM polarization case. For the TE polarization case, the agreement is good only near

broadside where the first order mechanisms are dominant. The classic GO/UTD

solution gives an erroneous result near the caustics (O _ -67 ° and 0 ._ 113°), and on

both the lit and dark sides. Away from the caustics, the UGO/EUTD and GO/UTD

results are in good agreement for both polarizations.

Figure 5.10 shows a plot of the bistatic echo width of a cubic polynomial strip

with a0 = 2.0)_, al = 0.5, a2 = 0.1)_-1_ a_ = 0.1A -2, a = -0.33k, b = 1.5,_, and angle

of incidence O' = -45 °, for the TM polarization case. For this geometry, the edge at

Q_ coincides with the zero-curvature point, thus the RSB and the caustic coalesce to

form a composite shadow boundary. The GO/UTD result exhibits a singularity at

the RSB associated with the edge at Qa (O _ -85°), whereas the UGO/EUTD result

remains finite and is in excellent agreement with MM. Figure 5.11 shows a plot of

the monostatic echo width of the same geometry. Again, the non-uniformity of the

GO/UTD solution is clearly evident, whereas the UGO/EUTD solution remains valid

across the composite shadow boundary and uniformly reduces to the the GO/UTD

result away from the transition region.
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The remaining four results in this section illustrate the ttexibility and universal

nature of the UGO/EUTD solution. Figures 5.12 and 5.13 show plots of the bistatic

and monostatic echo width, respectively, of a cubic polynomial strip with a0 = 2.0A,

a, = 0.5, a_ = 0.1A -L, a_ = 0.0A -2, a = -0.33A and b = 1.5A. This geometry

of course corresponds to parabolic screen and the zero-curvature point theoretically

moves to negative infinity. It is well known that the classic GO/UTD solution gives

accurate results for these type of geometries. The UGO/EUTD solution remains valid

and is in excellent agreement with both GO/UTD and MM.

Figures 5.14 and 5.15 show plots of the bistatic and monostatic echo width, respec-

tively, of a cubic polynomial strip with a0 = 2.0A, al = 0.5, a2 = 0.0A-', a3 = 0.0A -_,

a = -0.33A and b = 1.5A. This case corresponds to a flat strip since both the cubic

and quadratic coefficients are set equal to zero. The UGO/EUTD solution remains

122



20

--MM

...... UGO/EUTDI

....... GO/UTD

TM polarization

I I I I i I I I I I i i i i I I i I I I I I

-90 0 90

Angle (degrees)

180

Figure 5.13: Monostatic echo width (TM case) of a cubic polynomial strip with

ao = 2.0A, a, = 0.5, a_ = 0.1A -1, a, = 0.0A -_, a = -0.33A and b = 1.5A.

123



20 I I I

qbMM

UGO/EUTDI

TM polarization Q+J

+s°+, _

i i _ I I i i i I i i I i | I I I I I I

-90 0 90 180

Angle of Observotion _9(degrees)

Figure 5.14: Bistatic echo width (TM case) of a cubic polynomial strip with ao = 2.0A,

a, = 0.5, as = 0.0A-', a, = 0.0A -2, a = -0.33A, b = 1.5A and angle of incidence
8'= -45 +.

124



I

-C3

C-

O
C-
q2

L_

q2

C_

OD
O
C-
O

18

9

0

U_O/EUTDI

TM polarization

--9 I L I I I ] I I I

-180 -90

Angle

i

Y _;
X

i I I I I I I i i I i

0 90 180

(degrees)

Figure 5.15: Monostatic echo width (TM case) of a cubic polynomial strip with

ao = 2.0A, a, = 0.5, a2 = O.OA-', a3 = O.OA-2, a = -0.33A and b = 1.5A.

125



Q2

.

\

/
/

Figure 5.16: Geometry and relevant parameters for the scattering from a fourth order

polynomial strip.

valid for this special case also, a fact that demonstrates its flexibility for treating

general surfaces that are highly curved, slightly curved, or completely flat.

5.2 Scattering results for fourth order polyno-

mial strips

In this section, results for the plane wave scattering from fourth order polynomial

strips are presented and discussed. The scattering geometry and the relevant param-

eters are illustrated in Figure 5.16. The results in this section will be limited for the

case where the two first order zero-curvature points, Qp, and Qp_, are sufficiently far

apart. When Qpl and Qp_ are close together, the two caustics form a cusp and the

UGO/EUTD solution would fail. The UGO/EUTD solution does apply when Qpl
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.Figure 5.17: Bistatic echo width (TM Case) of a fourth order polynomial strip with
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and angle of incidence 8' = -45 °.

and Qp_ coalesce to form a second order zero-curvature point, however, no results for

this case are available at this time.

Figures 5.17 and 5.18 show plots for the bistatic echo width of a fourth order

polynomial strip with a0 = 1.0A, a, = 0.5, a2 = -0.4A -1 , as = 0.1A -2, at = 0.1A -s, a =

-1.5A, and b = 1.0A, illuminated by a TM and TE polarized plane wave, respectively,

incident at an angle O' = -45 °. The UGO/EUTD result shows good agreement with

MM for the TM polarization case. For the TE polarization case, the agreement is

good only near the specular and forward directions where the first order mechanisms

are dominant. The classic GO/UTD solution fails dramatical]y near the caustics

(0 _ -112' and 0 _ -35°). Figures 5.19 and 5.20 show plots for the monostatic echo

width of the same geometry for the TM and TE polarization, respectively. Again,

the UGO/EUTD result shows good agreement with MM for the TM polarization case,
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whereas the agreement is only good near broadside for the TE case. Also, notice that

when the concave part of the strip is illuminated and whispering gallery modes are

excited, the agreement is worse than the case where the convex part of the strip is

illuminated.

Figures 5.21 and 5.22 show plots for the bistatic and monostatic echo width,

respectively, of a fourth order polynomial strip with a0 = 1.0A, a, = 0.5, a_ = -0.4A -_,

a3 = 0.1A -_, at = 0.1A -_, a = -1.1A, and b = 1.0A. For this geometry, the edge at Qo

coincides with the zero-curvature point, Q_,, forming a composite shadow boundary.

The UGO/EUTD solution shows good agreement with MM, whereas the GO/UTD

solution fails both near the composite shadow boundary and the caustic associated

with Q_.
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and angle of incidence 8' = -45 °.

Finally, Figures 5.23 and 5.24 show plots for the bistatic and monostatic echo

width, respectively, of a fourth order polynomial strip with a0 = 1.0A, a, = 0.5,

a_ = -0.4A-', a_ = 0.1A -_, a, = 0.1A -3, a = -1.1A, and b = 0.6A. In this

case, both edges coincide with the zero-curvature points forming a pair of composite

shadow boundaries. The UGO/EUTD solution remains uniform across both compos-

ite shadow boundaries and shows good agreement with MM.
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Chapter 6

Summary and Conclusions

A uniform geometrical optics (UGO) and an extended uniform geometrical theory of

diffraction (EUTD) were developed in this report for evaluating high frequency elec-

tromagnetic (EM) fields within transition regions associated with a two and three di-

mensional smooth caustic of reflected rays and a composite shadow boundary formed

by the caustic termination or the confluence of the caustic with the reflection shadow

boundary (RSB).

The UGO is a uniform version of the classic GO. It retains the simple ray optical

expressions of classic GO and employs a new set of uniform reflection coefficients

involving the Fock type Airy functions that provide for a finite reflected field near a

smooth caustic on the lit side. Table 6.1 summarizes the UGO reflection coefficients

for the lit side of a smooth caustic. The UGO also encompasses a uniform version

of the complex GO ray field that exists on the dark side of the smooth caustic. The

UGO complex ray reflection coefficients are summarized in Table 6.2 and involve the

ordinary Airy function. They provide for a finite field near the smooth caustic on

the dark side. The EUTD is an extension of the classic uniform geometrical theory

of diffraction (UTD) and accounts for the non-ray optical behavior of the UGO re-

flected field near caustics by using a two-variable transition function involving the

incomplete Airy functions in the expressions for the edge diffraction coefficients. It

also uniformly recovers the classic UTD behavior of the edge diffracted field outside

the composite shadow boundary transition region. The EUTD edge diffraction coef-

ficients are summarized in Table 6.3. The UGO/EUTD expressions derived in this
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Table 6.1: UGO reflection coefficients for the lit side of a smooth caustic (near-zone,

arbitrary source iUumination).

Reflection

Coefficients

Parameter

Canonical

Function

g.,h = Te -_f.l

ZF for a ,L TE
for a PEC surface.

_,= [_kI(,0+z) - (,' +,')J ]_"

Fock-type Airy function [16]

Notes 7_',h should be used when P'_/(P't + s") < O.

Table 6.2: UGO complex ray reflection coefficients for the dark side of a smooth

caustic (near-zone, arbitrary source illumination).

Reflection

Coefficients

Parameter

Canonical

Function

_,-.,h = :F2v_7_/' ec_/_'_/_ Ai(%)

:F for a acoustic surface or
hard

for a PEC surface.

TM
, polarization

TE j

AiC"t) = _L,e_C'"+"'/'_dz

Ordinary (Miller-type) Airy function [17]
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Table6.3: EUTD edgediffraction coefficients valid near a composite shadow boundary

(near-zone, oblique incidence, arbitrary source illumination).

Diffraction

Coefficients

Transition

Function

Arguments

Notes

-e -j _ 1 :

v,,.-,.,RC-¢_-,.(co._) :oo.(":-_'_)._(:°'(°)

}7: for a acoustic surface or polarization
hard TE

for a PEC surface.

J:('r,¢) = J('y + (,)g.(.r,¢)e(.,+e /,)

i= , 2 if(<-(-7) 1/'

3 otherwise

g,(7,(), i = 1,2,3 are the incomplete Airy functions [9]

1 if ( > (-7) 1/2

for 7 < O, or
I

for7 > 0

Isin O0 (cos _o_+cos _o0)-sin Oa (cos _o_+cos _o_)I'/2

uo={ +1 ifQogS-1 if Qo 6 S

Ld is the EUTD distance parameter given in (3.110)-(3.117)

_'(%, C) should be used when Ld < 0
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Table 6.4: UGO reflection coefficients (far-zone, plane wave illumination).

Reflection

Coefficients

Parameters

7_.,h = Te j_ e -j[("-_)/"]_-' I'_(-%, v)

r soft 1 acoustic surface or f TM

L hard j _ TE

T for a ,

for a PEC surface.
v--1

v = 1 + 2, I is the order of the z-c point, Qp

Canonical 1,('7, v) = e_("'+'"/_')dze_ exp(j_'/2v)

Function J _,_p(-j-,_/2_)

Notes 7_:,, should be used when pg(Q_) < O.

polarization

report are approximate ones because the surface current used in the spatial domain

radiation integral representation for the fields was found using the PO approximation.

Therefore, the UGO/EUTD expressions account for only first order mechanisms and

remain valid within regions where grazing fields do not exist.

The UGO/EUTD analysis was employed to investigate the far-zone RCS problem

of plane wave scattering from two and three dimensional polynomial defined surfaces,

and uniform reflection, zero-curvature, and edge diffraction coefficients were derived.

These new UGO/EUTD coefficients involve a generalized form of the complete and

incomplete Airy integrals that serve as canonical functions. The UGO reflection

coefficients and the EUTD zero-curvature and edge diffraction coefficients for far-zone

observation and plane wave illumination are summarized in Tables 6.4, 6.5, and 6.6,

respectively.

Numerical results for the scattering and diffraction from cubic and fourth order

polynomial strips were also shown and the UGO/EUTD solution was validated by

comparison to an independent MM solution. The UGO/EUTD solution was also

compared with the classic GO/UTD solution. The failure of the classic techniques

near caustics and composite shadow boundaries was clearly demonstrated and it was
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Table 6.5: EUTD zero-curvature diffraction coefficients (far-zone, plane wave illumi-

nation, oblique incidence).

Diffraction

Coefficients

Parameters

Canonical

Functions

f
• H. v--2 |

_,o _e-'++-_-L, ' _ u)

• _. v--2

_.3.,= *_ p_,_, _,v)J_(%,v)

I+} /T for a , acoustic surface or
hard

/_,(-%,u), (lit side)

L.(-7., _), (dark side)

for a PEC surface.

+(G,v) = _ +
m(Qp,.)

_(Q_, u) = -al +- +)(Qp)(sin +; + sin V,)

u = l + 2, I is the order of the z-c point, Qp

I.,(7, u) _/=...(-J.+/++) ej(..+._/+,d z; (u odd)
d oc exp[j(--_'+3_c/2t,,)]

I.d(7, u) -- [=+'"(J'/++) eJ("'+++/+)dz; (u odd)
a oc exptjC+-=/2v)]

fo_.xp(j,,/2,.) ei('+'+'v/'°dz ; (y even)

Notes d_(%,v) should be used when _,(Q,,v) < O. '

, polarization
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Table 6.6: EUTD edge diffraction coefficients (far-zone, plane wave illumination,

oblique incidence).

Diffraction

Coefficients

Transition

Function

Arguments

_: h -- --e 4 1 JY('Td,_d,V)

, ,

_: for a acoustic surface or
hard TE

for a PEC surface.

•_'('7,_, V) = J('7 of_ _,'-l)I*(,7,_,v)eJ('_¢+¢"/*')

I polarization

J

oo exp[jxbo(tJ)]1o(% _, v) = eJ(_=+=Vl_)dz
s_

{ _r/2t, if [sgn(()]v-l(7 + _,-1) > 0Co(V) = -3_r/2v otherwise

7= if u is oddsgn(_=) if v is even,

% = sgn[.n(v_,.)]k_ sin_(cos _' + cos_)_(vp,.)

¢°= ==k'/vlsin_(cos _' + cos_)_(_,.)

- sin v_=(cos p'= + cos p=)w(v=, u)l _

[ +1 if Q0 9 S

[ -1 if Q0 E S

_(_,_) = _ _ m(v,_) = _v_c_._.(;-;')
rn(v_S,) ' V'(v)l"

v = l + 2, l is the order of the z-c point, Q_

Notes _"(%,Cd, V) should be used when R,(Q=) < 0
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shown that the UGO/EUTD results remained valid and uniformly reduced to the

classic results away from the transition regions.

It is believed that the work accomplished in this report is an important and timely

first step in the development of a useful engineering solution for the interaction of

high frequency electromagnetic waves with CAD generated surface components. Such

components are often designed using polynomial or spline surface patches that axe

then put together to create the desired models for complex structures. It is therefore

advantageous to use the CAD geometry information directly for RCS or antenna

analysis. Topics for future research include the extension of the EUTD edge diffraction

coefficients to handle wedge type geometries, and also the development of a diffraction

coefficient for a vertex in a polynomial or spline surface patch.
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Appendix A

The Ordinary and Fock-Type Airy
Functions

Both the ordinary (Miller-type) and Fock-type Airy functions satisfy Airy's differen-

tial Equation [23], that is

¢'(_)- _y(_)- o. (A.1)

The ordinary Airy functions Ai(_r) and Bi(_r) are two independent solutions of (A.1),

and in integral form they are defined as follows:

1 [Ai(_) - 2_r Jn e jc_'+'s/3) dz, (A.2)
21

Bi(a) a J _ ej_''*''/') dz, (A.3)
-- _--Tr 23+L13

where the contours of integration L:I, L2_ and L.,_ are shown in Figure A.1.

Their power series form which may be used for small argument approximations is

given by [21]

Ai(a) = clf(_) - c_g(a), (A.4)

Bi(a) = V_[c,f(a)+c_g(o')], (A.5)

where

1 °"_ _ 1 • 4 • 7 _r_f(o') = 1+ _ + a' + 9---f-- +..-, (A.6)

2 , V 2"5"8_1°g(_r) = a+ _a + a'+ 10------_- +'", (A.7)

cl = Ai(0) = Bi(0)/v_ = 3-'/'/F(2/3), (A.8)

c_ = -Ai'(0) = Bi'(0)/v_ = 3-'/'/r(1/3). (A.9)
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Figure A.I: Contours of integration for the ordinary Airy functions.
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The asymptotic forms of the ordinary Airy functions and their derivatives are as

follows:

1. 0.>> 1:

0 "-1/4 _
Ai(0.) _ 2v/-_e (2/_)'_/2 (A.10)

O.1/4

Xi'(0.) ,-, 2v/_e -(2/_)_n , (X.ll)

0.-t/4

Bi(0.) ",_ --_-e ('/8)''n , (A.12)

0.'/-_ (A.13)
Bi'(0.) "-_ g,,ffe (_/_>°_'_,

2. 0.<< -i:

0.-_/4 {2 3n 4)Ai(-0.) ~ ---_-sin _,_0. + , (A.14)

0.','r2.. ¼)Ai'(-a) .-_ --_cos _0. + , (A.15)

0.-'"r2 ._ 4)Bi(-0.) _,, --_--cos _,_.0. + , (A.16)

0.'" r2.2 ¼)Bi'(-0.) -,_ -_sin _,_0. + • (A.17)

Complete asymptotic expansions for the ordinary Airy functions may be found in [21].

The Fock-type Airy functions Wl.2(0.) [16] are also independent solutions of (A.1),

and in integral form they are defined as follows:

w,(0.) _ J _ (A.18)-- _ 23 e J(_*+*_/3) dz

W,(o') _- _ _,, ej(''+'' '') dz = W;(o'). (A.19)

In terms of the ordinary Airy functions they are given by

W,.2(a) = _ [Bi(0.) -4-jAi(0.)]. (A.20)

Of particular interest are the asymptotic forms of Wl,2 and their derivatives for 0. <<

-1. Using (A.14)-(A.17) and (A.20) they are given by
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W:(-_) _ _j_-o.,1,_,_,i_o'I'

W_(-_) ~ e-_ -'1'e-jc_1_>'_1_,

W'_(-_)~ -_J_o"'I'e-_'I_''I'•

(A.22)

(A.23)

(A.24)
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Appendix B

Numerical Evaluation of the

Incomplete Airy Functions

In this appendix, a method for the accurate and efFicient evaluation of the incomplete

Airy functions is developed. The incomplete Airy functions are functions of two vari-

ables and they satisfy the parabolic partial differential equation applied by Fock [24]

to the study of fields near the surface of a smooth convex scattering body, that is

-B-j gi(_,_)-0 ; i=1,2,3. (B.1)

In integral form, the solutions of (B.1) are defined as follows:

: eJ(Zt+zs/3) dz ; i = 1,2,3, (B.2)
,t Q

where the upper limit lles within one of the three sectors of the complex z-plane in

which the integral converges, that is

2(i-1)3 _< ¢i _< (2i-1)3 ; i=1,2,3. (B.3)

The contours of integration for the incomplete Airy functions are shown in Figure B. 1.

Only the function g, (8, _) will be considered in this appendix since the other two

functions, namely g2 and gs, can be obtained from g_ and the ordinary and Fock-type

Airy functions, that is

g_(_,_) = g,(_,_) - 2_'Ai(_), (B.4)

and

g,(Z,_) = g,(_,_) - jv_w,(z). (B.5)

146



J(_)/ ",,.

Jy

C_ ..//<"_\\ _)_

X

\ v

Ce\ ... ,, Q
_2 ""

..-_ , ..

z-plane

Figure B.I: Contours of integration for the incomplete Airy functions.
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The arguments 3 and _ will be taken as real, since in most practical applications real

3 and _ are of primary interest. However, this is not a requirement for the analysis

that follows and the resulting formulae are valid for arbitrary values of 3 and _. In

addition, _ will be restricted to positive values since for negative values of _, gl may

be obtained using the foUowing expression:

g,(_,-_) = 2_-Ai(3)- g;(_,_), (B.6)

with (*) denoting the complex conjugate operation.

B.1 Derivation of the series solution

In order to obtain a series solution for g1(3, _), we begin with the parabolic differentia]

equation in (B.1) and assume two independent sohtions of the form

and

y,(/3,_) = _an(_)3n, (B.7)
Iq_O

Y,(3,_) = _ b,(_)3" . (B.8)
I'tmO

Substituting (B.7) and (B.8)in (B.1) we obtain the following expressions:

and

rim2 n=O rim0

n=2 n=O n:O

(B.O)

(B.IO)

For Equations (B.9) and (B.10) to be satisfied, the sum of coefficients of like powers

of 3 must be zero for any value of _. To obtain the first independent solution, yl, we

let a_ (_) = 0, and setting the sum of coefficients of like powers in (B.9) equal to zero

we obtain

al(_) = O, V_, (B.11)

and an(_) = a,,_,(_) + ia'_,(,f)
n(n-1) , n_>3. (B.13)
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Similarly, for the second independent solution, Y2, we let b0(_) = 0 and setting the

sum of coefficients of like powers in (B.10) equal to zero we obtain

b0(_) = 0, V_, (B.14)

b_(_) = 0, V_, (B.15)

and b.(_) = b._,(_)+ jb___(_)
n(n-1) , n_>3. (B.16)

Thus, Yl and y_ are given by:

and

yl(_,_) = a0(_) + _a,(_)_", (B.17)
rim2

Y2(_,_) = bl(_)_ + _-_b,(_)_", (8.18)
n=2

where a,(_) and b,(_) for n >_ 2 can be expressed in terms of a0(_), b,(_) and their

derivatives, respectively, via Equations (B. 11)-(B. 16). Now, g, (j3, _) must be equal

to the sum of the two independent solutions, that is

oo

gl(_,_) = a0(_) + b,(_)/3 + _--_[a,(_) + b,(_)]_", (B.19)
n_2

and _gl(_,_) = bl(_)+ _n[a.(_) +b.(_)]_n-_ (8201
n-_2

Although the coefficients a.(_) and b,(_) can be combined into a single coefficient,

keeping them separate greatly simplifies their evaluation in a computer code.

Finally, it remains to find expressions for a0(_) and b,(_) in order to complete the

solution. This can be accomplished by applying the proper boundary conditions at

= 0 using the integral form of gl(_,_) given in (8.2), that is

ao(_)= g,(Z,_)l,=0= f e'_'_dz, (8.21)

and

0 (Z'_) _ 0 fbl(_)= _-_g, = jzeJ'_/3dz. (B.22)
=

The functions a0(_) and b_(_) can be expressed in terms of the incomplete Gamma

function [21] as follows:

a0(_)

b,(_)

= eJ"_3-"r(1/3,-j_'/3), (B.23)

= -e-'"3-'" r (2/3,-j_'/3), (B.24)
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where
oo

:/t > 0. (B.25)
Y

Using the series solution of the incomplete Gamma function [21], a0(_) and bl(_) are

computed using the following expressions:

• No,) (j_'/3)" (8.26)
ao(_) _ e"/'3-:/'r(1/3)-_ _.:0 (3n + 1)n!'

-c,)
and b_(_) _ -e-J_/63-1/_r(2/3)-J_:_-'_.=o (3n + 2)n!'

The number of terms in the series, N(_), is given by the empirical formula:

(B.27)

N(_) = 2 ÷ 4C ,_ (B.28)

and results in a truncation error of less than 10 -_. The derivatives of a0(_) and bl(_)

axe given by:

where

a_,)(_) = 3d, a o.(k-_)(_) + e,a_*-2)(_) ÷ j_a_-,)(_), n > 3, (B.29)

blh)(_) = j(k- 1)a_k-')(_) ÷j_a_k)(_), n > 1, (B.30)

a_ol)(_) = -e j''/' , (B.31)

and a_2)(_) -- _j_2e_'/,. (B.32)

The constants d, and e_ axe obtained using the following recursive relationships:

d_ = d,_, + eh_l, (B.33)

and e, = e,__+2, k>3, (B.34)

with d_ = e_ = 0.

When _ _ -oo, our solution should reduce to the series solution for the ordinary

Airy function, Ai(fl), given in Appendix A. In this case we have

a0(_ _ -oo) = 2_-Ai(0) = 2.23070703,

b_(_ _ -or) = 2_'Ai'(O) = -1.62621025,

(B.35)

(B.36)

150



and using (B.11)-(B.18) we obtain

( 1 3 _.w4 1"4"7 8 , )g,(3,_ -, -oo) = 2_rAi(0) 1 + _ + f/" + 9---T- +""

( 2,+ 2_rAi'(0) /3+ _ + 3_ + 10---T-

= 2_" Ai(f/),

which is a necessary condition for the validity of (B.19).

(B.37)

B.2 Derivation of asymptotic formulae

In this section, three asymptotic formulae for the incomplete Airy function, gl(f/, _),

involving several terms are derived and serve as large argument forms. We begin by

introducing the large parameter F_ in the integral form of g_(f/, _), and examine the

following integral:
oo

I0(a,7; fl ) = fe ja(''+_/') dz. (B.38)
"t

The objective is to obtain asymptotic expansions for I0 as fl -_ oo for various dispo-

sitions of the saddle points and endpoint. Then, the asymptotic formulae for g,(/3, _)

may be obtained using the following expression:

= £',Zo(O-= ,ea-'/',-r = £). (B.39)

Since we are interested in real f/and _ with _ > 0, the analysis that follows will be

restricted to real cr and 7, with 7 > 0.

Asymptotic Formula for fl + _ >> 1

This case corresponds to the endpoint being far removed from the possibly neighboring

saddle points of the integrand in (B.38), or 7 >> {al in. Although the sign of cr

is irrelevant in this case, the saddle points zl,2 = +(-tr) 1/2 are taken as real for

simplicity. Also, the original integration path P0 in Figure B.2 is deformed into the

steepest descent path, Podp, leading away from the endpoint at z 7 and into the

sector 0 < arg(z) < 7r/3 of the complex z-plane. The asymptotic evaluation of I0

can then be performed by means of Watson's lemma or alternatively by repeated

integration by parts as follows:
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Contour deformation of the incomplete Airy integralwhen 7 >> (__)I/2.
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1 d eJnC_,+,s/3)d z _ jja(_ + z,) dz a(_ + _,)
-y

+ jf_(tr + z') 2 eJ"C_'+'"l')dz" (B.40)
..y

ejn(,,-_+-_s/a)

Integration by parts can then be applied to the second integral in (B.40), and repeat-

ing the same procedure a few more times yields the following expression for I0(a,% _):

I0(_,'r; _)

1 [ 2j+ 5; (_+_)'

+

+ h-; (_ +-r_)'

_lv_ .] 1[ 4o_f
(_+ -r_)'] + 5; [(_+ _,)°

1 [ _--4_ 840j_' 16s0j_'

1203'_ ]

(;¥_)'J

+ O(a-'). (B.41)

Now, using Equations (B.39) and (B.41), the asymptotic formula for g,(l_,_) when

>>18J'_ is given by

[8+_----;+(8+_"? + (8+_')' (Z+_) '

40_ 120_s - 40j 840j_ 2 1680j_' ]

The derivative of g, (3, _) is given by

o 8,t
_g,(8,,') (8+_),eJ(_+d /3) [ --_ j 2j_ 2

L

8j- 12_" lOOj_' 280_ + 120j_'

(8+ _,), + (8+ _,)° (8+_,) _
1680_' - 280j 6720j_' - 1680_ '

+ +
(8 + _)' (8 + _)_

15120j_'

(8+_,) '°
(B.43)

Asymptotic formula for fl << -1

This case corresponds to real and widely separated saddle points (tr << -1) in the

integrand of Equation (B.38), with the endpoint 7 arbitrarily close to the saddle

point zl = (-or) 1/2, as shown in Figure B.3. For an asymptotic evaluation of (B.38)

that holds uniformly as the endpoint "_ approaches the saddle point z,, we make the

following transformation [9]:

q(z) = trz + z'/3 = q(z,) + s' = -2(-o')'/= + s 2 = r(s), (B.44)
,.,3
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Figure B.3: Contour of integration of the incomplete Airy integral when tr _ - 1 and
"r_ (__)1/2.
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with arg(s) restricted so that I0(a,?;fl) converges as s --4 oo. Hence, employ-

ing (B.44)in (B.38) we have

f f(,)e d,,
¢

(B.45)

with the upper limit taken in the sector 0 < arg(s) < _r/2 of the complex s-plane.

The quantities _ and f(s) are given by

[ _ ]'/'_=-t- a7+7'/3+ (-tr) _/2 ; 7>(-a) _/2, (B.46)

and

dz ,"(s)
f(s)- d8 - q'(z) -

Equation (B.45) can be written as follows [25]:

28

tr -4-z _
(B.47)

Io(_,7; n)= _-_°<-')'/_ {f(0) i 17e in'2 ds + -_
¢

(B.48)

and using integration by parts in the second integral we get

lo(a,7;n) = _-J_"(-_)3/2{i(o)]_J"'2ds
¢

- 2ja g(s)¢°'" ds ,

1 [f(_)- f(0)"2./n
eJN¢ 2

(B.49)

where

g(s) = sf'(s)- f(s) + f(O) (B.50)
S _

In a similar way, the second integral in Equation (B.49) can be written as follows:

1g(o) ej"''ds 2jfl
¢

1 fh(s)ejn o,2jfl ds ,
¢

(B.51)

where

h(s) : s¢(s) - g(s) + g(o)
8 2

(B.52)
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Thus, using (B.51), Equation (B.49) becomes

I0(a,%n) = e-J'n(-')_/_ [f(O)- 2-_g(O) ]

eJn(_+_a/a ) _ 1+
( 2jfl

[1+ e-q°(-°)"' (2fa),

/ eja,2 d8

¢

"f(¢) -¢ f(0)" + (2J_)21 [g(¢) -¢ g(0)

-- fh(.)¢°'_ d.].
(

}
(B.53)

The same procedure is repeated once more for the last integral in (B.53), that is

/h(s)d n'2 ds "_ [h(O)- 2-_k(O)] f e_n'2ds + e_°e {-2-_fl [h(_)- h(O)]

1 [k(_) O(fl-')+ (2in? _k(o)]} + , (B.54)

where

k(s) = sh'(s)- h(s) + h(0) (B.55)
82

and finally combining (B.53) and (B.54), the asymptotic expansion of/0(or, 7; fl) when

a << -1 is given by

Io(a, 3'; f_) _- 1 I h(o)e-_"c-o_"2f(O)- 2-;-6g(0)+ (2jfl)----_

1

(2j_)_k(O)] f eJna ds + dn(_'+"/_) {-2_ [f(') - f(O) ], ¢

1 [g(_')g(O)" 1 [h((_)+ (2in), _ (2in), _ h(0)]

1 [k(()-k(0)'}+ (2jfl). C + O(fl-_). (B.56)

In order to express the functions f, g, h, and k in (B.56) in terms of a and 7, we

need to derive an expression for f(s) and its derivatives when s _ 0. Since f(s) is

regular near s = 0, it can be expanded in a Taylor series around s = 0 by means of

Lagrange's theorem. This is done using a procedure introduced by Erd61yi [26] that

yields

1 ® r(3n/2- 1)(-1)"-'

,,._1 (B.5_')f(s) - (-o-)_/'= (n- 1)!l"(n/2)[3(-a)'/'] "-' '

d' 1 ,.v_, r(3n/2- 1)(-1)"-'
_'-_skf(8) -- (--°')_1"--'_ .=,+tL (n- k- 1)!r(n/2)[3(-o-)'/'] "-1

8.--k--1 (B.58)
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Hence,using (B.47), (B.50), (B.52), (B.55), (B.57), and (B.58) we have

2¢
f(() - a+72, (B.59)

-87( 1 (8.60)
g(¢) - Ca+ 7') _ + C(-a)']"

- 16( 9672 3 5

h(() - (a + 7')' + (a + 72) _ (+(-a),/+ + 24('(-a)m ' (B.61)

6407 19207 _ 15 5

k(() _ (a + 7') + Ca+ 7')' + C(-a)_]' 8('(-a)"
77

+ 3456(_(_a),3/, , (B.62)

1

f(0)- (-a),/,' (8.63)

-1

f'(0)- 3(-a)' (8.64)

g(0)- f"(0) 5
2 - 24(-a)'/' ' (B.65)

g'(0)- /'"(0) -8
3 - 27(_a)_/_, (8.66)

h(O)_ p)(o) ??
8 - 3456(_a)1,/+ , (B.67)

h'(0)- f_)(o) -56
15 81(-a) +' (B.68)

k(0)- f16)(0) 12155
48 - 82944(-o')"/'' and (B.69)

k'(0)- f(')(0) -640
105 - 243(-a) u]'' (B.70)

Also, the Fresnel integral in (B.56) may be expressed in terms of the UTD transition

function F(z)[4], that is

where _/ = fl_/'(. The general properties of the UTD transition function and de-

tails on its computation axe provided in Appendix D. Now, using (B.59)-(8.71), the

asymptotic expansion of lo(a,7; fl) when a << -1 is given by

e-J_n(-,,)a/2

Io(a,7;fl ) -_ fl,]_(_a)l] + S(a;fl)A(r/) + eJm_"+"%')E(a,7,,7;12) + O(fl-_), (B.72)
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where

s(,,-;_)= 1
81 82 8:1

2./r_(-,,)_/_+ (2#a),(-,,).,- (2ja),(-,,-),/, ' (B.73)

E(_,%_;a)

+

+

I[2 a 'n ]2jr, 0-47;' - ,7(--_r)I/'J
1 r r,.,:

(2ja), ICe-+T,)' + _'(--)'"
1 r -16 961, 2

(2#a)-"[(,,-+ _,)' + (0-+ ,-r')+

_3/28t nl/=s2 ]
'r (--")" '7( -- " )1-" J +

151"}W2

,r(-,,.),],
I. [.64o-,,

19203'' 3fl5/28_ fp/282

(0-+ _,)' + ,7,(-,,-)'/' ,r(-,,)" + _'(-,,)'"
_'_t/28s

, (B.74)

with .8, = 0.20833333, .8= = 0.33420139, and ,8:,= 1.02581260.

The asymptotic formulae for g,(_3,_) and its derivative when # << -1 are then

obtained using (8.39)) and (8.72)-(8.74), that is

where

s(#) =

s(#) =

E(#,_,_) -

+

$z a2 as

i 2j(-/3)"/: + (2j)2(-/_) s (2j)-'(-/3)'Z" '

1.5a_ 38: 4.5a+

2j(-#)',/' + (2j)2(-#)' (2j):'(-#)"-,"'

1[ 2 1 +]2j # + _: ,7(-#) / J
1 r 1 sl

(2j) _' [(/9T_:):' -I- r/:(_8)1_,, _(_/_),,,,

(B.77)

(B.78)
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and

0

pu

+

1 f -16 96_ 2 3 s,

(2j)3 [(_ + _,), + (t_+ _,)5 ¢(__),/, + _ff__),/,

,2 ] 1 [ _64 192o 3

351 82 83 ]

2/L(_ + _")_ 4,1(-_)_/'+ 2,7(-_')'/' J

1 / 24_ 1 3[_- (-_)_/_]
(2J) _ t (_ + _)' -4- 47/_(-/_/) _/' 27/5(-_) _/'

7s, sl[,-(-fl)'/']} 1 { 644r/(_Z)_l/, + 2_fl(_Z),/, (2j) z (fi/+ _')-'

480_' 3 15 [_ - (-_)'/_]

(j3 + _,)6 4)/_(__)_/, + 2)/,(__)_/,

7s, as, [_ - (-_) '/2 ] 13s_
+

4'q3(-_)H/' 2r/_ (-,B)'/' 4r/(-,B),m

s2[_-(-_)'/']} 1 {-3840_ 13440_ 3+ 2¢(__)_3_, + _ (_ + _,), + (_ + _,).

+
4,q'(-_)5/' 2,q_(-/_),/' 4,q, (-/_')_,/,

15s, [_ - (-_3) _/'] 13s, 3s_ [_ - (-_)'/']
+ +

2'q'(-_)'/' 4'q3(-_)'_'/' 2y_(-,_),3/,

19s3 s3 [_ - (-,8)'/_] ]

4,_(__),3/,+ 2¢(-#),_, ._ ' (B.80)

_-_A(_) - O_leS'?-[_# - (-3)'/'] es"' (B.81)0_ 27 ] '

= + t_ + _3/3+ (-ZV' ; _ <>(-_))'<'. (B.82)

It can be easily shown using the large argument form of the UTD transition

function (see Appendix D) that when _ >> (-/_/)'/' or )/>> 1, Equation (B.75) appro-

priately reduces to the first six terms in (B.42). Also, (8.79) and (8.80) remain finite

near the caustic when _ ---, (-/_)'/_ and _/ ---, 0, however, they become numerically

unstable and an alternative formulation should be used. Applying L'ttospital's rule

in (8.56), and then using (8.39) and (8.57)-(8.70) we have

E(/_,_,_/_ 0) _ fo [1 f'_/ f'rl' ]_j(__) (__),_------_+ (_-_,]
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go[- (2j)_(-/3)']_ 1 (-/_)'"

ho [ h_7+ (2#),(-/_), 1 (_/_),. +

ko [ k_r/- (2#),(-/_)-_' 1 (-/_)"

g,r/ g_r/2
__ -31- --

k_o _
+

(-a),/_

and

a E(#,_,_ = 0)
O# fo {1 7f_r/2j(-fl) _ 4(-/9)'/"

-I-f2 [_- (-fii')'/_] } - go {1(-/_),_ C2./)_C-_)"_
g_[_- (-_)'_]

}
19h_r/ hi

+ 4(-_),. 2 +

h2 [,- (-_)'/'] "_ ko {1+ (:h_;; j - C2j)'C-_)",'

k, 7k,,7'
- _- + (_/_),;, + (_/_) ; J '

gl 492r/2
- --+ --+

2 (-_)']'

ho {I(2j)'(-_)'

f, 5f,_ '
+

2 2(-Z),_,
13g_ T/

4(-_)',

llh2r/2

2(-Z)'_
25klr/

4(-/_)'"

where

fo = 1/3, f, = 1.25, f2 = 4/3,

go = 0.29629630, g, = 3.00781250, g2 = 5.83333333,

ho = 0.69135802, h, : 4.74804688, h2 = 13.3333333,

ko = 2.63374486, k_ = 6.48405151, k2 = 23.8333333.

Also, A(r/) and its derivative near the caustic are given by

A(_0) _ v_¢,,, J,7'T -'7- T'
-- eJ n2d

and ._h(rl _ O) =
,,_(__),/2 ] ,,,2 •

2(-/_')'/' [1 + 3(-_),/2 jap

(B.83)

(B.84)

(B.85)

(B.86)

Asymptotic formula for fl >> 1

This case corresponds to imaginary and widely separated saddle points (o- >> 1) in

the integrand of Equation (B.38), with the endpoint 7 arbitrarily close to the saddle

point zl = j<r _/2, as shown in Figure B.4. For an asymptotic evaluation of (B.38) that
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/

/

ane

Figure B.4: Contour of integration of the incomplete Airy integral when _ >> 1 and

•7 _ jo.I/2.

holds uniformly as the endpoint 7 approaches the saddle point zl, we make the same

transformation as in (B.44), that is

q(z) : o'z + z'/3 = q(zl) + 82 : j_o "'/2 + 8 _ = _(8), (B.87)

with arg(8) restricted so that 10(_,7;_) converges as s _ oo. Hence, employ-

ing (B.87)in (B.38) we have

Io(*r, 7; n) = e -_nJ/2 j.f(a)e in'2 da, (B.88)

with the upper limit taken in the sector 0 < arg(8) < 7r/2 of the complex s-plane.

The quantity _ is given By

.2 ,/211/2=+ _rT+7'/3-J_r j ; _(7) >0, (B.89)
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and f(8) is the same as in (B.47). Then using the same procedure as in the case of

a << -1, I0(tr,'_; fl) when a >> 1 is given by

e-_n_al_-j,_l_ _

+ e°(o_+.'/-)_(,,,.y,x;rZ)+ o(n-,), (B.90)

where

_.(x): I. ; X:fl'/2(, (B.91)

F(X) is the Fresnel transition function of complex argument (see Appendix E), and

is1 s2 is3 (B.92)
S(a;fl) = 1 (2jfl)a./_ (2jfl)2a , + (2jfl),a_/2,

_ 1[2jfl _r + "72

1 [ -8-/+ (2jfl); (_¥7,) '

1 [ -16

2 e-_ _12

Xo.1/4

963,_ 3e-J_fl_/2
+ (,,+.y,y x,_,/,

+ (B.93)

The asymptotic formulae for g,(_,_) and its derivative when _8 << -1 are then

obtained using (B.39) and (B.90)-(B.93), that is

O

_g,(_,_)

,.., S(fl) _-(X) + eJ(e'+"/')E(/_, _, X), (B.94)
_/*

[(1)
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where

and

+

(B.96)

(B.97)

(B.98)

(B.99)

(B.IO0)

(B._O_)
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2_+{2=12

2 4 6 8

Figure B.5: Four different sets of formulae are used for the computation of the in-

complete Airy function, one for each region in the Figure, and a fifth set that is used

in the immediate vicinity of the caustic.

Using the large argument form of the Fresnel transition function given in Appendix

E, it can be easily shown that when _ + _ >> 1 Equation (B.94) appropriately reduces

to the first six terms in (B.42).

B.3 Computational aspects and error assessment

For an efficient and accurate computation of the incomplete Airy function gl(_' _) and

its derivative, the argument space is divided into four regions as shown in Figure B.5.

Four different sets of formulae are used, one for each region in Figure B.5, and a fifth

set of formulae that is used in the immediate vicinity of the caustic (/3 + _ _ 0. In

region I, Equations (B.42) and (B.43) are used, in region II, Equations (B.75)-(B.82)

are used, in region IIIEquations (B.94)-(B.101) are used, and in region IV, the series

solutiongiven in (B.19) and (B.20) isused. In the immediate vicinityof the caustic

and specificallywhen 7/< 0.1 in (B.82),Equations (B.75)-(B.78) and (B.82)-(B.86)

are used.
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An empirical expression for the number of terms used in the series solution is

given by:

N(_,_) = 81_1+ 4, when _ < 2.0,

= 81_1+ 4 + 31_1(_- 2.0), when _ > 2.0,

(B.102)

(B.103)

and results in a truncation error of less than 10 -6.

Figure B.6 shows the percent amplitude error of the first asymptotic result (/3 +

_2 >> 1) relative to the series solution along the boundary between regions I and IV.

The results are plotted vs. the parameter _/, with _ = (12 - 2_) 1/2. The asymptotic

result shows excellent agreement with the series solution, exhibiting a maximum error

of 0.12%. Figure B.7 shows the percent amplitude error of the second asymptotic

result (j3 << -1) relative to the series solution along the boundary between regions II

and IV. The results for this case are plotted vs. the parameter _, with _ = -4. Again

the asymptotic result shows excellent agreement with the series solution, exhibiting

a maximum error of only 0.075%.

Figures B.8 and B.9 show plots of the incomplete Airy function gl(_, _) in the

first and second quadrants of the _-plane, respectively. Figures B.10 and B.11 show

plots of the derivative of the incomplete Airy function with respect to ;3 in the first

and second quadrants of the _-plane, respectively.

A FORTRAN code for the computation of the incomplete Airy functions based

on the formulae derived in this appendix is available from the author.
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Figure B.6: Percent amplitude error of the first asymptotic result (8 + _) for

the incomplete Airy function (solid line) and its derivative (broken line) along the

boundary between regions I and IV. Results are plotted vs. the parameter _ with

= (12 - 2/3) '/2.
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Figure B.7: Percent amplitude error of the second asymptotic result (/3 << -1) for

the incomplete Airy function (solid llne) and its derivative (broken line) along the

boundary between regions II and IV. Results are plotted vs. the parameter _ with

/3 = -4.0.
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Figure B.8: Plots of the real and imaginary parts of the incomplete Airy function,

gl (fl, _), in the first quadrant of the fl_-plane.
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Figure B.9: Plots of the real and imaginary parts of the derivative with respect to

of the incomplete Airy function, gl (_, _), in the first quadrant of the fl_-plane.
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Figure B.IO: Plots of the real and imaginary parts of the incomplete Airy function,

g_ (13, _), in the second quadrant of the _-plane.
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Figure B.11: Plots of the real and imaginary parts of the derivative with respect to

fl of the incomplete Airy function, gl(fl,_), in the second quadrant of the fl_-plane.
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Appendix C

The Generalized Incomplete Airy

Integral

The generalized incomplete Airy integral serves as a canonical function for the uniform

asymptotic approximation of a class of integrals characterized by multiple symmet-

rically situated stationary phase points that arbitrarily close to one another or to an

integration endpoint [22]. It is defined as follows:

K'_(7,(,u) _= ]eie'*+*"/")dz; v = 3,4,5-.. , (C.1)

where 7 and ( are considered real, and the path of integration is any path that goes

to infinity in the sector 0 < arg(z) < _r/v. When v = 3, Kw(7,(,3) in (C.1) is the

definition for the incomplete Airy integral [9]. When v = 4, K---_(7 , (, 4) is a special

case of the incomplete Pearcy integral with the quadratic phase coefficient being equal

to zero.

The complex plane topology of the generalized incomplete Airy integral when

( > 0 is depicted in Figure C.1. Depending on the endpoint location relative to the

saddle point K,_(7 , (, v) may be written as follows:

1. 7+_ _-' < 0,_ > 0:

K---_(% (, v) = f®"P<-J"/'_>eJ("+'"/"_dz + e_e"÷'"/")dz, (C.2)_ _xp(j.12.)
4 ( a co eJtp(--$a,_/2.)

2. 7+C -_ > o, (> o:

(c.3)
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IIm (z ) z-plane

_ r0 iRe(nalz)
path

Figure C.I: Complex plane topology of the generalized incomplete Airy integral for

¢>0
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Im (z ) I z-plane

/ Re (z)
/

z2=-Zl Original path

Figure C.2: Complex plane topology of the generalized incomplete Airy integral for

< 0 and v odd.

The complex plane topology of the generalized incomplete Airy integral when

< 0 and v odd or even is depicted in Figures C.2 and C.3, respectively. Depending

on the endpoint location relative to the saddle point K_(7,_, v) may be written as

follows:

3. 7+_-_ <0,_<0, visodd:

__ foo ex p[-j'(_c-t+r/2v]s'+(-y,_,_,)=
,re

4. 7 + C-' > O, _ < O, v is odd:

__ f oo exp[j( _,-',r 12v]K+(%¢,v) =

5. 7+(v-' <0,_<0, viseven:

_+(_, (, v) = [_-pl-ic.-./2v3
,t(

/oo,xgj.12_) eJ(_'+f_l_)dz
ei(_x+*_/_)dz + J _o,xp[-i(+-s./2_)]

(C.4)

f_,,p(i.12_) ei(_'++_l_)dz
eJ(_s+ sV lv)dz _- J _ exp[i(_-.12v)]

(c.5)

(c.6)
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Figure C.3: Complex plane topology of the generalized incomplete Airy integral for

< 0 and v even.
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6. 7 + ("-' > 0, ( < 0, v is even:

_+(7,(,v) =/=,._t_c+-++],_l
.r(

C.1

oo exp(j_-/,_)
eJ("'+" /_)dz + .,_ exp_(_-S_/2v)]

The incomplete Airy integral

eJ('_'+'v/V)dz . (C.7)

A special case of particular interest for K+("/, _, v = 3) in (C.1) is the incomplete

Airy integral which serves as a canonical function for the uniform asymptotic ap-

proximation of a class of integrals characterized by two stationary phase points that

arbitrarily close to one another or to an integration endpoint [27]. It is defined as

follows:
0O

_(7,0 =/'/e_+,+ ,/,_dz , (c.s)
(

where ,.1,and ( are considered real, and the path of integration is any path that goes

to infinity in the sector 0 < arg(z) < lr/3.

The complex plane topology of the incomplete Airy integral when the saddle points

z,,_ = +(-7) ,/' are real (,.1, < 0) is depicted in Figure C.4. There exist three cases

depending on the location of the endpoint ( relative to the saddle points z,,_, and

Ai(7, () may be written as follows:

1. ( < -(-7)'/':

--f'"+"'°+'+"'"+"+ "+'+"'"++Z "+'+"'"+"
*' ( 23 3,

= s_(7,0 - jvr_=[w,(7)- w,(7)], 7 < o, (c.9)

2. -(-,.1,)̀/`< ( _<(-7)'/_:

A](7,(') = f"""""J*" eJ(""+"o/O)dz + fL eJ('"+"Z')dz
_'( sl

- g,(7,() + jC;w,(7), ,.1,< 0

3. ¢> (-7)'_':

(c.:o)

__ f o. e,pij,h )Ai(7,() = ej¢''+`'/')dz = g,(7,¢), 3' < O. (C.11)

The complex plane topology of the incomplete Airy integral when the saddle points

z,,2 = +(-,.1,) `/` are complex (,.1,> 0) is depicted in Figure C.5. There exist two cases
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Im(z)

z I _ _ Re(z)

L31 Original path

Figure C.4: Complex plane topology of the incomplete Airy integral for 7 < 0.

depending on the sign of the endpoint _, and A-_(7, _) may be written as follows:

4. ¢<0:

¢_ 21

- g2(7,¢) + 27rAi(T), 7 > 0, (c.n)

5. ¢>0:

,,,p(J,h) ej(._.+,,Sl,)dz =_ g,(7,_), 7 > O. (C.13)
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Figure C.5: Complex plane topology of the incomplete Airy integral for 7 > O.
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Appendix D

The UTD Transition Function

The UTD transition function utd is defined as follows:

f(z) zx 2jv/_ej_ f e_j_2 dr, (D.1)

where z is cosidered real, with _ = Iv/'_[ if z > 0, and _ = j[v/_l if z < 0. Also,

the path of integration in the Fresnel integral is any path that goes to infinity in the

fourth quadrant. F(-[z[) may be obtained using the following relation:

f(-Izl) = r'(Izl). (D.2)

When z < 6.0, F(z) is computed using its power series form, that is

N¢.) (--jx)" (D.3)
F(z) __ v/-_eJ¢_'+'q')sign(z)- 2jze j" Y_.=o(2n + 1)n!'

The number of terms in the series, N(z), is given by the empirical formula

N(z) = 10V/-_,

and results in a truncation error of less than 10 -6.

Fresnel transition function (z > 6.0) is given by:

F(z) "_ ,__-0_ (2Jz) m

(D.4)

The large argument form of the

where

0 ra

(D.5)

(D.6)
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Appendix E

The Fresnel Transition Function

of Complex Argument

In this appendix, some properties and formulae for the Fresnel transition function

with complex argument are presented. The Fresnel transition function is defined as

follows:

?(_) _=2j_e_'_/e -'_ d8 (E.1)
o0

where the path of integration in the Fresnel integral is any path that goes to infinity

in the fourth quadrant. When _ is real, F(_) = f(_'), where F(z) is the UTD

transition function [4]. The complex plane topology of the Fresnel integral is shown

in Figure E.1. Also, F(-() may be obtained using the following relation:

F(-_) = F(_) - 2_-_ e j'_ . (E.2)

The power series form of i_(_) used in small argument approximations is given by

_'(_)-Y/_eSe'-2Jl_2e_'2_(2nq-1) n!;.=0 I_] << 1. (E.3)

The asymptotic expansion of F(_) used in large argument approximations is given

by:

_F(_) .._ 2_:'w_ei,2u(__?)+ 1+ _(-1) m 1.3--.(2m- 1)
..=, (2j_')" ; 1_[:>> 1, (E.4)

= _(_e_). (E.5)
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Figure E. 1: Complex plane topology of the Fresnel integral with complex argument
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Appendix F

Geometric Interpretation of the
Phase Derivatives in the 2-D PO

Radiation Integral

In this appendix, the phase derivatives in the PO integral formulation for the near-

zone EM scattering from a smooth two dimensional curved boundary are expressed

in terms of the local geometric parameters of the boundary C as shown in Figure F.1.

The phase function ¢(l) in the 2-D PO radiation integral is given by

where

¢(l) = ,'(l) + R(t), (F.1)

lo is an arbitrary reference point on the boundary C, l = t0 + 6l is the arclength, and

_l) is the natural representation of C.

1. First derivative, ¢(1):

From Equation (F,1) the first derivative of the phase function is given by

¢(1) = _'(l) + R(l). (F.4)

Taking the first derivative of both sides of Equation (F.2) we have

+ {[g'(lo)+_l)].t(lo)}r-_l).t(lo). (F.5)
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Figure F.I: Geometric parameter definitions for the phase derivatives in the 2-D PO

radiation integral
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Using the fact that r-'(1) = t'(1) from the Frenet Equations [28] we have that

_'(0 = {[_'(to)+ _(t)]. _'(lo)}
s;(t)

and letting b -_ 0, that is l0 --_ l we have that

(F.6)

_'(l) = _'(t) .r(e), (F.7)

and in a similar fashion

R(t) = -R(l). t(O. (F.8)

Thus, using Equations (F.7) and (F.8), the first derivative of the phase function is

given by

¢(l) = [_(l) - R(/)]. t'(1). (F.9)

2. Second derivative, ¢(t) :

From Equation (F.1) the second derivative of the phase function is given by

8(0 = _'(e)+ k(0. (F.10)

Taking the derivative of both sides of Equation (F.5) we get

[_'(e)]2+ ¢(0_'(0

(F.11)

and using the fact that _(l) = g,(l) = -_(1)n(l) from the Frenet Equations [28],

where s_(1) denotes the normal surface curvature, and again letting _ --_ 0, that is

l0 --_ 1 along with Equation (F.7) we have that

_'(t) = -_,(t) [_'(0. _(l)] + ,,(l) ,,(t) (F.12)

In a similar fashion, k(1) is given by

k(t) = ,_,(t)[k(t). n(t)] + -- -_(t) _(t) (F.13)
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and thus using Equations (F.12) and (F.13),the second derivativeof the phase rune-

tion is given by

_(_)= [_(t)-_,(_1]._(t)[_,(_)._(_)1,[_(tl_(t)]_
pg(l) + s'(l) + R(l) ' (F.14)

where pgCl) = 1/s,(l) is the surface radius of curvature at l.

3. Third derivative, ¢ (l) :

The third derivative of the phase function is given by

(t) =_i(l)+ R (t). (F.15)

Taking the derivatives of both sides of Equation (F.11) we get

3_'(l)_'(l) + ¢(l) ;'(l) = -3[_(l)._(lo)][_(l)._(lo)]_,(t)

-
- {[_'(lo)+¢(t)]._(lo)}[_(l)._(to)]_(l)

and using the fact that _(Z) = t'(l)s,(_) from the Frenet Equations [28], and again

letting _ --* 0, that is l0 --, I along with Equations (F.7) and (F.12) we have that

3[_'(_)._(_)][_'(_)._(_)]_,(_)
+ _(t)

3[_'(_)._(_)]'[_'(0. _(_)]
[,,(_)]_

(F.17)

m

In a similar fashion, R (l) is given by

R(t) [_(_)._(_)]_,(_)+ [_(_)._(_)]_:(_)

+
_(_)

-{-
R, Ct)

(F.18)
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and thus using Equations (F.17) and (F.18), the third derivative of the phase function

is given by

+

[_'(0 -_(t)]. rCt)
[_Ct)- s'Ct)],aCt)_Ctl- p_Ct)
3[_'(t)-_(t)][_,(t).rCt)][

+ RCt) L_ + Rct) (F.]9)

Finally, using the following relations:

_'(t) ._(t) = - sine' (F.20)

_'(t). r(t) = - cos0' (F.21)

_(t)._Ct) = sinO (F.22)

/_(1).t'(1)= cos0 (F.23)

Equations (F.9), (F.14), and (F.19) can be expressed in terms of the angles 0 and 0'

defined in Figure F.I,that is

¢(t) = -(cos0+ cosO'), (F._.4)

¢(l) : sin0+sin0' sin'0' sin'0 (F.25)po(t) + ,,(t--_+ u(t----y'
cos0 + cos 0'

(t) = (sin0 +sin0')k,(l)+
p_(t)

3 sin 0' cos 0' [ 1 sin 0']+ ,,(t) _ + _j
3sin0cos0 [ 1 sin0]

+ RCt) tp-_ + RC1)J" (F.26)

When l is a reflection point as shown in Figure F.2, Equations (F.24)-(F.26)

reduce to the more familiar expressions

_(l_) = (_'- _)-t, = 0, (law of reflection) (F.27)

1 1 2

p" - s" + po(Q,) cos 0' = (reflected ray caustic distance)-' , (F.29)
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Figure F.2: Reflection from a 2-D curved boundary
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0_ ' [r_ _ 3 cos 2 0 i sin 0 i [ 1: 2cos ,,_', - _ _p_(Q,_c°_e_

- ., p_(Or_cos0r +

cx (reflected ray spread factor near a caustic)-'.

1]
(F.30)
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Appendix G

Geometric Interpretation of the
Phase Derivatives in the 3-D PO

Radiation Integral

In this appendix, the phase derivatives in the PO integral formulation for the near-

zone EM scattering from a smooth three dimensional curved surface are expressed in

terms of the local geometric parameters of the surface S as shown in Figure G.1. The

phase function ¢(l, r) in the 3-D PO radiation integral is given by

¢(l, _) = _'(l, _) + _(l, _),

= {[_+_,,_] ._0}_+{[_+_,_] ._o}_
+ {[c+_,_/]._o}_,
: {[_-_,_] ._0}_+{[_-_,,_] ._o}_
+ {[_-_e,,_]._0}_,

where

(G.1)

(c.2)

(G.3)

l'0, q0, and _o are the principal unit tangents and unit normal vector at the reference

point (10,r0) forming a local surface orthogonal coordinate system, l = l0 + gl and

r = 7"0+ er are the arclengths from (£o, r0) to (/,r) along the principal coordinate

curves of S which are always orthogonal, and the surface vector _l, r) is therefore

a natural representation of S for which the first and second fundamental forms are

given by the following expressions [29]:

I(dt, d_) = de + d__, (C.4)
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Figure G.h Geometric parameter definitions for the phase derivatives in the 3-D PO

radiation integral
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H(al, a_) = -_,(t,_)ae - _(t, _)d__, (G.S)

where 1¢1,2 are the principal curvatures along the principal surface directions g"and 9,

respectively. Equations (G.4) and (G.5) imply the following relations:

r%(g, r) . r%(/, r) = 1, (G.6)

;-_(t,_).#_(t,_) = 0, (G.r)

#_(t,_).g(t,_) = 1, (G.8)
,.

r_(g, r) = -a(t, r)_(g, r) , (G.9)
.,

_(t,_) = 0, (G.10)
,,

r%_(/, r) = -_(g, r),_(t, r) . (O.11)

1. First derivatives, _bt(g, r) and ¢_(t, r):

From Equation (G.1) the first derivatives of the phase function are given by

g(/,r) = _(g,r) +/_L(g,r), (G.12)

&(t,_) = a',(t,_) + &(t,_). (C.13)

Taking the first derivative with respect to g of both sides of Equation (G.2) we have

,'(l,r)J_(t,r) : {[g_ +_t,r)]-[o};_t(t,r).g'o

+ {[a': + {l,r)] " ?o} r)(/, r) . ?o

+ {[K_ + r-'(i,r)] " "o} <(/, r) . "o . (G.14)

Using the fact that r_t(g,r) = l" from (G.6) and (G.7) and letting 6, e + 0, that is

(go, %) --_ (l, r), Equation (G.14) becomes

_(t,_) = _'(t,_) •_',

and in a similarfashion/_t(£,r) is givenby

(G.15)

h,(t,_) = -k(t,_) •L

Furthermore,usingthe fact that _'_(g,r) = ? from (G.7)and(G.8)wehave

Ji,(g,r) = gi(g,r).? and &(t.,r)= R(g,r).9,

(G.16)

(G.17)
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thus,thefirstderivativesof thephasefunction_,(t,r) and_,Cl,r) aregivenby

In terms of the angles 0_., and Or., defined in Figure G.1, the first derivatives of

the phase function may be written as follows:

b,(t, _) = -(cos 0_+ cos0,), (G.20)

4,.(g,r) = -(cos0" + cos0.). (G.21)

2. Second derivatives, _ktt(g, r), _t_(t, r), and _._.(g, r):

From Equation (G.1) the second derivatives of the phase function are given by

8,.(t,r) = 8_.(t,_)+"'k,_(t,_), (G.23)

8,(t,_) "= 8,.,.(t,r)+ R_.,.(l,r). (G.24)

Taking the derivative with respect to l of both sides of Equation (G.14) we get

+ {[,_+,_,_]._o}[_,_._o]
+ {[_+_,,_/]._o}[;_,,_/._o]. _G.2_

Letting 6, e _ 0, that is (to,to) _ (g,r) and using (G.9), Equation (G.25) becomes

Directly from (G.26) one can also infer the following expression:

•i 2 i -i

Taking the derivative with respect to r of both sides of Equation (G.14), then letting

6, e --, 0 and using Equation (G.10) we also get

_(t,_)_(t,_) + ,'(t, "r),t_(t,r) = 0. (G.28)
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Then, using Equations (0.15), (O.17), and (G.26)-(0.28) we obtain the fonowing

expressions:

1-
_(t,r) = -_,(l,T)[_'(t,r)._] +

s'(t,_)

',(g, r) = -_(g, r) [_'(g, r) _] +

Similarly, the quantities Ru, Rt_, and R_, are given by

(0.29)

(0.30)

(o.31)

_
k,_(l,_-)= ,_,(z,_-)[k(t,_-)._]+ R(l,,-) ' (0.32)

R(g,r) ' (0.33)

i-[J_(l,r) .._]2 (0.34)/_.(t,r) = ,_(t,T)[_(l,T)._] + R(l,,')

Finally, using (0.29)-(0.34) the second derivatives of the phase function are given

by

(G.35)

, (0.36)

+ (0.37)

In terms of the angles 0", 0n, 0_,r, and 0t,r defined in Figure G.1, the second

derivatives of the phase function may be written as follows:

sin 20_ sin 20t (0.38)_(t,_) = (cos0_+ cos0.)_,(t,_)+ ,,(_,---_+ R(t._----_'

_(t,r)- cos_cos0; cos_cos0_
s_(l, r) + R(1, v) ' (G.39)
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sin 2 8_ sin 2 Or

_._(t,r) = (_os0'_+ cos0.),,_(l,_)+ ,,(¢r-----_+ R(¢r-----_

3. Third derivatives, gut (1,r), gu_ (1,r), _,-,t (1,r), and _,.,._. (t,r):

From Equation (G.1) the third derivatives of the phase function are given by

w m

Cut(t,r) = ;b_Ct,r)+ Rut Ct,r),

Cu.(t,_) : ;h.(t,_)+ _ (t,r),
m

¢,._,(t,r) = ;' (t,r),
m

(G.40)

(G.4_)

(G.42)

(G.43)

(G.44)

Taking the derivative with respect to t of both sides of Equation (G.25) we get

3_(t,,-)_hCt,,-)

(G.45)

m

Next, from Equations (G.6)-(G.11) one can show that rut (l,r)is given by

m

_ut(t,_)= -_(t,_)_'- [_.w,(t,_)] _,

and letting _, e _ 0 Equation (G.45) becomes

3_(t,r)_h(t,,-) + ,'(t,,-) ;h(t,,-)

Directly from (G.47) one can also infer the following expression:

• i -i
3,.(t,_),..(t,_)+,'(t,_); ;._(t,_): -_:(t,_)[_'(t,_) ._]

-

(G.46)

(_.4_')

(¢.48)
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Next, taking the derivative of Equation (G.28) with respect to g and r we obtain the

following expressions:

2_(t,-' _'_(t,_)#_(t,_)_'(t,_)-'_)__(t,_)+ + •_(l,_) = o,

2_'_(t,_)_'_(l," _t(l,_)= o.

Then, using (G.15), (G.17), (G.29)-(G.31), and (G.47)-(G.50) the quantities ; _,

- i - i and - ' given byaur , s rrt, s rrr are

-i
8 Ur(_ T)

;i_(t,_)

2

, (G.51)

, (G.52)

, (G.S3)

, (G.54)

m _ m m

Similarly, the quantities Rut, Put,-, R,.,-t, and R,-_ are given by

m

R,-,-,-(t,,-)

+

+ _(t,_) _,(t,_) [k(t,_)._] + _(t,_)

_(t,_) ._ _(t,_)[_(t,_)._] +
_(t,,-) _(t,,-)

R(/,r) • l" { 1- 3 [/)(/,r) • ?] _ }

_t:;_ _,(t,_) [_(t,_)._] + _(t,_)

, (G.ss)

, (G.S6)

, (G.57)

, (G.S8)
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Finally, using Equations (G.41)-(G.44), and (G.51)-(G.5S) the third derivatives of

the phase function are given by

¢_ (t,,)

,'(t,r)

+ , (G.60)

_'(t,,)._ { [_'(t,,) n]- _- 3[_'(t'')'e]_ }- _i _,(t,_) • ,,(t,,)

__3[_(t,_)._], }+ h(t,_)._ _,(t,r)[k(t,,)._]+
R(t,_) R(t,,)

¢,_ (t,,) = [kCt,,)- _'(t,,)]" T_:Ct,-)_ + [_. V_,(t,,)]_}

+ 8--_-t_-) 3n2(t'r) [_iCg'')'_] - 1 - [_"(g'r)" _]2_'(t,,')

+ R-_t,_ 3_(t,T)[kCt,,)._]+ R(t,,) , (G.6_)

In terms of the angles 0", 0,, 0_.,, and Ot._ defined in Figure G.1, the third deriva-

tives of the phase function may be written as follows:

= (¢os_ + _os_,)_(t,,) + (cos_: +

¢ose_ [ sin'_ ]+ si(l,, ) 3cos0Ltq(g,,)+ ,-_,_)j

cosOt [ sin' 0t ]+ RCt,,) 3cos0.,,, (t, ,) + RCt,r)J '

[= ,-(t,,) _o_'.,,,(t,,)+ ,,(t,,)

cose. [ 1-3cos'0t]+ _(t,,-----5cose._,(t,,) + _t-;gy '

:o_.) [_.w,(_,,)]

, (G.61)

(G.64)
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1 - 3 cos' 0;.]
cos0_cos0'.,,,(t,r) +-

 o.0, [+ RCl,.,-)cose,,,,:.,Cl,-r)+_{,_

+

+

(cos0;+ cose_),_TCl,r)+ (cos0'.+ cos0,,)[_.v,_,Ct,r)]

cose; e'_n,(l,r)+ 8_--_,7)jsi(t,r) 3 cos

(G.65)

cosO_-[ sin'0_-] (G.66)R(l,,-) 3cos0.,_(t,,') + R(t,,'------5"

When (g, r)is a reflection point q r = (l,, r,), as shown in Figure G.2, one can

use the derivatives of the phase function in the PO radiation integral to derive some

familiar expressions involved in the reflected field from a 3-D surface. The first

derivativesof the phase function given in (G.18) and (G.19) evaluated at Q, represent

the law of reflection, that is

$,(l,,_) = (_, - _r). e, =0,
(G.67)

which can be written in a more familiar form as follows:

(G.68)

The second derivatives of the phase function given in (G.38)-(G.40) evaluated at Q_

with (G.67) being employed are related to the spread factor of the reflected wavefront

through the following expression:

$_(l_,_)$..(t,,_,)- 0,.(l,'' ,_) = cos20i(l+;i. ) (1+1) (G.69)

o¢ (reflected ray spread factor) -2 ,

where 0 i is the usual angle of incidence, and p_,, are the radii of curvature of the

reflected wavefront due to spherical wave illumination and are given by

1 1 1 [n, CQ,.)sin 20. + n2CQ,.)sin 2or]

1 [nl(Qr) sin z Or + n, CQ_) sin 2 Or]2 - 4n, CQr)a_(Q,.) (G.70)± _
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REFLECTEDRAY e_r _r /_r± m '_//_ / INC_I_DvENT'='_

/

£r = OUTWARD UNIT NORMAL AT Q r

_r = UNIT TANGENT AT Qr

_r = UNIT BINORMAL AT Qr

_r, _r = PRINCIPAL DIRECTIONS AT Q r

_ = _r x _r

INTERSECTION OF THE
PLANE OF INCIDENCE WITH S

Figure G.2: Reflection from a 3-D curved surface
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where the angles Ol._- are defined in Figure G.2 and _;1,2(Qr) are the principal surface

curvatures at Qr in the directions of l'r and e,, respectively. An alternative expression

for rPt,,- is as follows:

1 1 f _a(Q') r

Pt,__ - 8_ + cos0i [1+

_,(Q.) ei
f : 1+ )u_,'^.---_tc°s2 '

pag(Q,) , (G.71)

(c.;2)

where _;a(Q,) is the normal surface curvature along the plane of incidence, _;t(Q_) is

the normal surface curvature along the transverse plane defined by the unit normal

vector _ and the unit binormal vector b,, and they can be found using Ealer's

theorem [29], that is

sa(Qr) = _;_(Qr) cos2 (_ + _;2(Qr) sin2 a, ((;.73)

_;,(Qr) = _;,(Q,)sin 2a + n_(Q,)cos _ a, (G.74)

where a is the angle between/', and l'_ as shown in Figure G.2. The third derivatives of

the phase function given in (G.63)-(G.66) evaluated at Qr with (G.67) being employed

are related to the spread factor of the reflected wavefront when the observation point

is near a caustic (p[ = -s _) through the following expression:

- _,,(t.,r,)

[3;u'('''_')-;l_(l'''_);l''(t'''') ]_.(,.,_r) (c.75)

(x (reflected ray spread factor near a caustic) -_ ,

where

m

= 2 cos 0 i

COS _
+

8 i

cos 0t
+

8 i

3cosO',_,(Qr)+ ,,, J

• sin _ Ot ]
3cose',_,(Q,.)+ ,,. j (G.76)

(C.7_)

(C.78)
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EDGE-FIXED PLANE

OF
' A

(_i ra)

/ /

/

S

Figure G.3: Diffraction from a curved edge in 3-D surface (side view)

4>u,-(l,.,_',)

m

4>_..(t,.,_',.)

cosS_.[ 1- 3cos28_]

cosS.[ 1 - 3cos' St]+ s_ cosO'n,(Q,) + s" '

c°s O't [cos O,_,( Q. ) + 1- 3 c°s" 8_ ]- 7' -_

I- 3cos'0,]cos 8t cos 8",_(Q,.) + - - .
+ s_ s" J

(G.79)

(G.so)

When (t, r)is an edge diffraction point Q= = (l=, to) as shown in Figure G.3,

one can use the derivatives of the phase function to derive some familiar expressions

involved in the diffracted field from a curved edge in a 3-D surface. It is assumed here

for convenience that the edge extends along the surface coordinate curve r. The first

derivative of the phase function along r given in (G.19) evaluated at Qa represents

Keller's law of edge diffraction, that is
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_.(lo,To)= (_'o- _)_o =0, (G$1)

where _, is the associated unit tangent to the edge at Q,. The second derivative of the

phase function along r given in (G.40) evaluated at Q. with (G.81) being employed

is related to the spread factor of the diffracted wavefront, that is

_,(i.,r,) -- sin'S, 1 + (G.82)

oc (diffracted ray spread factor) -2 ,

where tg, is the angle of diffraction defined in Figure G.2, and p_ is the distance from

the caustic at Q, and the second caustic of the diffracted ray and is given by

pd S', Ra sin 2 tga

where a, is the associated unit normal vector to the edge at Qa directed away from

the center of curvature, and R,. > 0 is the radius of curvature of the edge at Q..

The third derivatives of the phase function given in (G.f3)-(G.66) evaluated at Q_

with (G.81) being employed are related to the distance parameter for the EUTD

transition function, that is

L.(Qo) =

¢,_ (l°,,-o) =

+

+

+

_,.(t°, r.) =

m

¢,_,.(l_,,-,,) -

where

- _,_(lo,ro)

[3_ (l°'_°)- _(t°' _°)_ (t°'_°)]_--_(_17o)
, (G.84)

(cos0_ + cose_,),c:(Qo)

sin tga(sin _" + sin _a)[l'." tc_(Q.)]

cos0_ [ , sin' e_l- 3n,(Q,,)sint_,,sin_p,, + -.-
, s'_ J8 a

sin' oa,] (0.85)cos0a_ 3tc,(Q.)sintg_sin_. + s_ Js d

cos O_ cos 0". cos Or.. cos 0,-.+ , (G.s6)

cos 0_.,, [ , 1- 3cos2 0_,]: t_(Q,,) sin _,, sin _pa + ,
•9_t '9 a
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AT Qa

Figure G.4: Diffraction from a curved edge in a 3-D surface (top view)

1 - 3 cos 2 0zo_cos0_ _(Q.)sin_asin_0° + (G.87)
+ 4 4 '

1 - 3 cos 2 0_",[_l,_ (t.,r.) - cosO_. _,(Q.)sin4_sin_o + i
8_, 8.

cosO_ [,%(Q.)sin#_ sin _o_ + 1- 3cos_ O_. ' (G.88)
+ L

The angles _o'_and _o_ are the angles between the projected directions of incidence

and observation (on a plane perpendicula_ to 9o) and l. as shown in Figure G.4.
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